Ce Sun , Song Zhang , Rong Tu , Lihong Wu , Jiahao Ye , Yusheng Shi , Chunze Yan , Huajun Sun , Yuhan Liao , Peng Chen , Kai Liu
{"title":"Additive manufacturing of gradient porous Si/SiC ceramic parts: Quasi-static behaviors and mechanical properties","authors":"Ce Sun , Song Zhang , Rong Tu , Lihong Wu , Jiahao Ye , Yusheng Shi , Chunze Yan , Huajun Sun , Yuhan Liao , Peng Chen , Kai Liu","doi":"10.1016/j.compstruct.2024.118693","DOIUrl":null,"url":null,"abstract":"<div><div>Porous silicon carbide (SiC) ceramic exhibits low density, high toughness, which endow it with an indispensable role in engineering applications. However, the manufacturing, designing, and making full use of the rich pore structure of gradient porous SiC ceramic to improve its mechanical performance still face many challenges. Herein, the manufacture of gradient porous Si/SiC ceramic part is realized for the first time, and the influence of gradient structural on mechanical properties is deeply analyzed. The results indicate that the porous Si/SiC ceramics with constant gradient transition rate is characterized by step-by-step destruction and can carry larger strains than the porous Si/SiC ceramics with non-constant gradient transition rate. Meanwhile, reducing the gradient span can improve the strength, but it is easy to lead to brittle damage. In particular, gradient porous Si/SiC ceramics with constant gradient transition rate and 30 % gradient span can exhibit both good strength and toughness. The compressive strength can reach 11.71 MPa, and the equivalent elastic modulus can reach 2.28 GPa. Finally, a laminar material prediction model for mechanical properties is presented. This paper presents an effective fabrication method for gradient porous ceramic parts and provides a feasible means for the design and prediction of mechanical properties.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"352 ","pages":"Article 118693"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324008213","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Porous silicon carbide (SiC) ceramic exhibits low density, high toughness, which endow it with an indispensable role in engineering applications. However, the manufacturing, designing, and making full use of the rich pore structure of gradient porous SiC ceramic to improve its mechanical performance still face many challenges. Herein, the manufacture of gradient porous Si/SiC ceramic part is realized for the first time, and the influence of gradient structural on mechanical properties is deeply analyzed. The results indicate that the porous Si/SiC ceramics with constant gradient transition rate is characterized by step-by-step destruction and can carry larger strains than the porous Si/SiC ceramics with non-constant gradient transition rate. Meanwhile, reducing the gradient span can improve the strength, but it is easy to lead to brittle damage. In particular, gradient porous Si/SiC ceramics with constant gradient transition rate and 30 % gradient span can exhibit both good strength and toughness. The compressive strength can reach 11.71 MPa, and the equivalent elastic modulus can reach 2.28 GPa. Finally, a laminar material prediction model for mechanical properties is presented. This paper presents an effective fabrication method for gradient porous ceramic parts and provides a feasible means for the design and prediction of mechanical properties.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.