Accelerated biological evolution in outer space: Insights from numerical analysis

IF 3.1 2区 物理与天体物理 Q1 ENGINEERING, AEROSPACE Acta Astronautica Pub Date : 2024-09-28 DOI:10.1016/j.actaastro.2024.09.044
Satoshi Sano
{"title":"Accelerated biological evolution in outer space: Insights from numerical analysis","authors":"Satoshi Sano","doi":"10.1016/j.actaastro.2024.09.044","DOIUrl":null,"url":null,"abstract":"<div><div>As humanity continues its space exploration, understanding biological evolution in extraterrestrial environments will become crucial. On Earth, organisms have adapted to new environments, and some genetic data indicate positive natural selection. This paper investigates the impact of space environments, such as high radiation and microgravity, which may lead to high mutation rates and positive selection, on biological evolution, using numerical analysis. It quantifies the evolutionary rates and the time until a new mutation reaches fixation (100 % frequency within population) beyond Earth. The findings reveal accelerated evolution rates, 1,000 to 10,000 times faster than on Earth for beneficial mutations, with the time until fixation being 0.002 to 0.004 times shorter, assuming mutation rates are 10–100 times higher. These results offer insights into various areas, including space facility design, space agriculture, astrobiological exploration, and life sustainability beyond Earth and Solar System, illuminating the potential for a ‘Big Bang of Evolution’ in outer space.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"225 ","pages":"Pages 907-912"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576524005460","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

As humanity continues its space exploration, understanding biological evolution in extraterrestrial environments will become crucial. On Earth, organisms have adapted to new environments, and some genetic data indicate positive natural selection. This paper investigates the impact of space environments, such as high radiation and microgravity, which may lead to high mutation rates and positive selection, on biological evolution, using numerical analysis. It quantifies the evolutionary rates and the time until a new mutation reaches fixation (100 % frequency within population) beyond Earth. The findings reveal accelerated evolution rates, 1,000 to 10,000 times faster than on Earth for beneficial mutations, with the time until fixation being 0.002 to 0.004 times shorter, assuming mutation rates are 10–100 times higher. These results offer insights into various areas, including space facility design, space agriculture, astrobiological exploration, and life sustainability beyond Earth and Solar System, illuminating the potential for a ‘Big Bang of Evolution’ in outer space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加速外太空生物进化:数值分析的启示
随着人类继续进行太空探索,了解地外环境中的生物进化将变得至关重要。在地球上,生物已经适应了新的环境,一些遗传数据显示了积极的自然选择。高辐射和微重力等太空环境可能导致高突变率和正选择,本文通过数值分析研究了这些环境对生物进化的影响。它量化了地球以外的进化速度和新突变达到固定(种群内频率达到 100%)所需的时间。研究结果表明,有益突变的进化速度比地球快 1000 到 10000 倍,假设突变率比地球高 10-100 倍,则突变达到固定的时间缩短 0.002 到 0.004 倍。这些结果为包括太空设施设计、太空农业、天体生物学探索以及地球和太阳系以外的生命可持续性在内的各个领域提供了启示,揭示了外太空 "进化大爆炸 "的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Astronautica
Acta Astronautica 工程技术-工程:宇航
CiteScore
7.20
自引率
22.90%
发文量
599
审稿时长
53 days
期刊介绍: Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to: The peaceful scientific exploration of space, Its exploitation for human welfare and progress, Conception, design, development and operation of space-borne and Earth-based systems, In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.
期刊最新文献
Improving landing stability and terrain adaptability in Lunar exploration with biomimetic lander design and control Vision-based navigation and obstacle detection flight results in SLIM lunar landing On the two approaches for the combustion instability predictions in a long-flame combustor Investigation of discharge voltage characteristics of a lanthanum hexaboride heaterless hollow cathode Effect of particle size on gasification of solid fuel in a low-temperature gas generator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1