Transient behavior of thermocapillary convection in thin liquid film exposed to step laser heating

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Heat and Fluid Flow Pub Date : 2024-10-08 DOI:10.1016/j.ijheatfluidflow.2024.109602
Tiwari Ratnanjali, Ogawa Shuma, Ishimura Misa, Nishino Koichi
{"title":"Transient behavior of thermocapillary convection in thin liquid film exposed to step laser heating","authors":"Tiwari Ratnanjali,&nbsp;Ogawa Shuma,&nbsp;Ishimura Misa,&nbsp;Nishino Koichi","doi":"10.1016/j.ijheatfluidflow.2024.109602","DOIUrl":null,"url":null,"abstract":"<div><div>Temporally developing thermocapillary convection induced by step laser heating of a thin liquid film has been studied numerically. Computations are performed using the commercial software STAR CCM+ version 2022.1. The liquid film of silicone oil (high Prandtl number fluid) is 60 mm in diameter and 3 mm in thickness. Flow characteristics related to surface velocity and surface temperature have been studied. Validation of the computations is achieved for the surface velocity, the velocity along thickness and the surface temperature through comparison with PIV and IR camera measurements. The laser-beam with a carbon dioxide gas laser (10.4 μm in wavelength) is used for heating. It is found that the temporally developing profile of surface velocity shows two local velocity peaks (<span><math><msub><mi>u</mi><mrow><mi>S</mi><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mi>u</mi><mrow><mi>S</mi><mn>2</mn></mrow></msub></math></span>) at two radial locations (<span><math><msub><mi>r</mi><mrow><mi>S</mi><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mi>r</mi><mrow><mi>S</mi><mn>2</mn></mrow></msub></math></span>) respectively. The first peak, <span><math><msub><mi>u</mi><mrow><mi>S</mi><mn>1</mn></mrow></msub></math></span>, appearing due to the steep temperature gradient generated by laser-beam heating and its radial position, <span><math><msub><mi>r</mi><mrow><mi>S</mi><mn>1</mn></mrow></msub></math></span>, do not change noticeably with time. On the other hand, the second peak, <span><math><msub><mi>u</mi><mrow><mi>S</mi><mn>2</mn></mrow></msub></math></span>, travels radially outwards with decreasing magnitude in a self-propelling manner until its radial position, <span><math><msub><mi>r</mi><mrow><mi>S</mi><mn>2</mn></mrow></msub></math></span>, approaches an asymptotic maximum. Detailed analysis of the coupling among radial temperature gradient, local pressure variation and local convective acceleration near the second peak reveals that hydrothermal mechanisms are responsible for self-propelling travel of <span><math><msub><mi>u</mi><mrow><mi>S</mi><mn>2</mn></mrow></msub></math></span>. The transient behaviors of both primary and secondary velocity peaks are found to depend on the fluid viscosity and the laser-beam settings.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"110 ","pages":"Article 109602"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X24003278","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Temporally developing thermocapillary convection induced by step laser heating of a thin liquid film has been studied numerically. Computations are performed using the commercial software STAR CCM+ version 2022.1. The liquid film of silicone oil (high Prandtl number fluid) is 60 mm in diameter and 3 mm in thickness. Flow characteristics related to surface velocity and surface temperature have been studied. Validation of the computations is achieved for the surface velocity, the velocity along thickness and the surface temperature through comparison with PIV and IR camera measurements. The laser-beam with a carbon dioxide gas laser (10.4 μm in wavelength) is used for heating. It is found that the temporally developing profile of surface velocity shows two local velocity peaks (uS1 and uS2) at two radial locations (rS1 and rS2) respectively. The first peak, uS1, appearing due to the steep temperature gradient generated by laser-beam heating and its radial position, rS1, do not change noticeably with time. On the other hand, the second peak, uS2, travels radially outwards with decreasing magnitude in a self-propelling manner until its radial position, rS2, approaches an asymptotic maximum. Detailed analysis of the coupling among radial temperature gradient, local pressure variation and local convective acceleration near the second peak reveals that hydrothermal mechanisms are responsible for self-propelling travel of uS2. The transient behaviors of both primary and secondary velocity peaks are found to depend on the fluid viscosity and the laser-beam settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
暴露于阶跃激光加热的薄液膜中的热毛细对流瞬态行为
通过数值计算研究了激光阶跃加热薄液态薄膜诱发的时变热毛细对流。计算使用商业软件 STAR CCM+ 2022.1 版进行。硅油(高普朗特数流体)液膜直径为 60 毫米,厚度为 3 毫米。研究了与表面速度和表面温度相关的流动特性。通过与 PIV 和红外摄像机测量结果进行比较,对表面速度、沿厚度方向的速度和表面温度的计算结果进行了验证。使用二氧化碳气体激光束(波长 10.4 μm)进行加热。研究发现,表面速度的时变曲线在两个径向位置(rS1 和 rS2)分别显示出两个局部速度峰值(uS1 和 uS2)。第一个峰值 uS1 是由于激光束加热产生的陡峭温度梯度而出现的,其径向位置 rS1 不会随时间发生明显变化。另一方面,第二个峰值 uS2 以自我推动的方式沿径向向外移动,幅度不断减小,直到其径向位置 rS2 接近渐近最大值。对第二个峰值附近的径向温度梯度、局部压力变化和局部对流加速度之间的耦合关系进行的详细分析显示,热液机制是 uS2 自推进移动的原因。研究发现,一级和二级速度峰的瞬态行为取决于流体粘度和激光束的设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
期刊最新文献
Pseudo three-dimensional topology optimization of chip heat sinks with various inlet–outlet arrangements Investigation of free and impinging jets using generalized k–ω (GEKO) turbulence model Preparation and characterization of modified steel slag-based composite phase change materials Hydrothermal performance enhancement of heat sink using low flow-drag twisted blade-like fins Thermal-hydrodynamic analysis for internally interrupted-finned tubes: Experimental, numerical and performance study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1