Robust branched Poly(p-terphenyl isatin) anion exchange membranes with enhanced microphase separation structure for fuel cells

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Pub Date : 2024-09-26 DOI:10.1016/j.memsci.2024.123368
Yijia Lei , Jialin Zhao , Jian Gao , Jingyi Wu , Na Li , Xiaoyu Chi , Yan Wang , Yiman Gu , Zhe Wang
{"title":"Robust branched Poly(p-terphenyl isatin) anion exchange membranes with enhanced microphase separation structure for fuel cells","authors":"Yijia Lei ,&nbsp;Jialin Zhao ,&nbsp;Jian Gao ,&nbsp;Jingyi Wu ,&nbsp;Na Li ,&nbsp;Xiaoyu Chi ,&nbsp;Yan Wang ,&nbsp;Yiman Gu ,&nbsp;Zhe Wang","doi":"10.1016/j.memsci.2024.123368","DOIUrl":null,"url":null,"abstract":"<div><div>Anion exchange membrane fuel cells (AEMFCs) are gradually becoming the focus of sustainable hydrogen energy research due to the advantages of clean by-products, faster oxidation-reduction dynamics and allowing cheap platinum-free base materials. As the key components of AEMFCs, anion exchange membranes (AEMs) are required to have high ionic conductivity and dimensional stability. This study focused on the design and preparation of branched AEMs for AEMFCs. The b-PTIN-x membranes were generated by incorporating 1,3,5-triphenylbenzene (TPB) units into rigid poly(p-terphenyl isatin) (PTI) polymer backbones. This innovative approach aimed to induce microphase separation structures by exploiting TPB with high FFV, as well as to enhance the tensile strength of AEMs with the help of branched structures. SAXS and AFM images revealed that the AEMs achieved enhanced microphase separation structures, resulting in the formation of ion transport channels with dimensions in the range of a few nanometers (3.36–3.70 nm). The branched b-PTIN-11 membranes displayed significant OH<sup>−</sup> conductivity (153.9 mS cm<sup>−1</sup> at 80 °C) while having a low ion exchange capacity (IEC) (1.73 mmol g<sup>−1</sup>). The b-PTIN-11 membranes displayed improved tensile strength (56.69 MPa) and exceptional dimensional stability, with swelling ratio (SR) of 18.5 % at 80 °C. They also showed great chemical stability with 89.64 % conductivity remaining, lasting for more than 1200 h in 3 M NaOH solution at 80 °C. Ultimately, the b-PTIN-11 membrane underwent testing to evaluate its performance in a fuel cell using H<sub>2</sub>–O<sub>2</sub>. It demonstrated a peak power density (PPD) of 566 mW cm<sup>−2</sup> when subjected to a current density of 1339 mA cm<sup>−2</sup>.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"713 ","pages":"Article 123368"},"PeriodicalIF":8.4000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824009621","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Anion exchange membrane fuel cells (AEMFCs) are gradually becoming the focus of sustainable hydrogen energy research due to the advantages of clean by-products, faster oxidation-reduction dynamics and allowing cheap platinum-free base materials. As the key components of AEMFCs, anion exchange membranes (AEMs) are required to have high ionic conductivity and dimensional stability. This study focused on the design and preparation of branched AEMs for AEMFCs. The b-PTIN-x membranes were generated by incorporating 1,3,5-triphenylbenzene (TPB) units into rigid poly(p-terphenyl isatin) (PTI) polymer backbones. This innovative approach aimed to induce microphase separation structures by exploiting TPB with high FFV, as well as to enhance the tensile strength of AEMs with the help of branched structures. SAXS and AFM images revealed that the AEMs achieved enhanced microphase separation structures, resulting in the formation of ion transport channels with dimensions in the range of a few nanometers (3.36–3.70 nm). The branched b-PTIN-11 membranes displayed significant OH conductivity (153.9 mS cm−1 at 80 °C) while having a low ion exchange capacity (IEC) (1.73 mmol g−1). The b-PTIN-11 membranes displayed improved tensile strength (56.69 MPa) and exceptional dimensional stability, with swelling ratio (SR) of 18.5 % at 80 °C. They also showed great chemical stability with 89.64 % conductivity remaining, lasting for more than 1200 h in 3 M NaOH solution at 80 °C. Ultimately, the b-PTIN-11 membrane underwent testing to evaluate its performance in a fuel cell using H2–O2. It demonstrated a peak power density (PPD) of 566 mW cm−2 when subjected to a current density of 1339 mA cm−2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于燃料电池的具有增强微相分离结构的稳健支化聚(对三联苯靛蓝)阴离子交换膜
阴离子交换膜燃料电池(AEMFCs)具有副产品清洁、氧化还原动力学速度快、无铂基础材料便宜等优点,正逐渐成为可持续氢能研究的重点。作为 AEMFC 的关键部件,阴离子交换膜(AEM)需要具有高离子传导性和尺寸稳定性。本研究的重点是设计和制备用于 AEMFC 的支化 AEM。b-PTIN-x 膜是通过将 1,3,5-三苯基苯(TPB)单元加入刚性聚(对三联苯异铂)(PTI)聚合物骨架而产生的。这种创新方法的目的是利用 TPB 的高 FFV 诱导微相分离结构,并借助支化结构增强 AEM 的拉伸强度。SAXS 和原子力显微镜图像显示,AEMs 实现了增强的微相分离结构,形成了尺寸在几纳米(3.36-3.70 nm)范围内的离子传输通道。支化 b-PTIN-11 膜具有显著的 OH- 导电性(80 °C 时为 153.9 mS cm-1),而离子交换容量(IEC)较低(1.73 mmol g-1)。b-PTIN-11 膜显示出更高的抗拉强度(56.69 兆帕)和优异的尺寸稳定性,80 °C 时的膨胀率(SR)为 18.5%。它们还表现出极高的化学稳定性,在 80 °C 的 3 M NaOH 溶液中可保持 89.64% 的电导率,持续时间超过 1200 小时。最后,对 b-PTIN-11 膜进行了测试,以评估其在使用 H2-O2 的燃料电池中的性能。当电流密度为 1339 mA cm-2 时,其峰值功率密度 (PPD) 为 566 mW cm-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
期刊最新文献
Stringing covalent organic framework particles for preparing highly loaded mixed-matrix membranes for efficient and precise dye separation High rejection seawater reverse osmosis TFC membranes with a polyamide-polysulfonamide interpenetrated functional layer Lattice-defective metal-organic framework membranes from filling mesoporous colloidal networks for monovalent ion separation Methanol tolerable ultrathin proton exchange membrane fabricated via in-situ ionic self-crosslinking strategy for high-performance DMFCs Non-metallic cation and anion co-doped perovskite oxide ceramic membranes for high-efficiency oxygen permeation at low temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1