Song Lei , Sisi Wen , Jian Xue , Ao Wang , Jiaqi Li , Zhongyuan Liu , Longgui Zhang , Yifeng Li , Haihui Wang
{"title":"Non-metallic cation and anion co-doped perovskite oxide ceramic membranes for high-efficiency oxygen permeation at low temperatures","authors":"Song Lei , Sisi Wen , Jian Xue , Ao Wang , Jiaqi Li , Zhongyuan Liu , Longgui Zhang , Yifeng Li , Haihui Wang","doi":"10.1016/j.memsci.2024.123500","DOIUrl":null,"url":null,"abstract":"<div><div>Insufficient structural stability and limited lattice oxygen mobility at low temperatures seriously limit the application of perovskite-type oxides in mixed ionic-electronic conducting oxygen-permeable membranes. Engineering the crystal structure and oxygen vacancies by ion doping is an effective strategy to enhance both structural stability and lattice oxygen mobility. Different from conventional metal ion doping, we report that the co-doping of the classical SrCoO<sub>3-<em>δ</em></sub> by the non-metallic cation P<sup>5+</sup> and the anion Cl<sup>−</sup> stabilizes the cubic perovskite structure and allows low temperature oxygen permeation due to improved lattice oxygen mobility. In detail, P doped at the Co site transforms the crystal structure from the hexagonal phase to the cubic phase, and Cl doped at the oxygen site weakens the metal-oxygen bond, which significantly enhances the lattice oxygen mobility. Optimal doping concentrations were found to be SrCo<sub>0</sub><sub>.</sub><sub>95</sub>P<sub>0</sub><sub>.</sub><sub>05</sub>O<sub>3-<em>δ</em></sub>Cl<sub>0.05</sub> (SCP5Cl5). Furthermore, by constructing an asymmetric membrane with a sandwich structure, the oxygen permeation flux of the SCP5Cl5 ceramic membrane was up to 1.10 mL min<sup>−1</sup> cm<sup>−2</sup> at 873 K, which provides an effective strategy for developing oxygen-permeable membranes with high permeation flux at low temperatures.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123500"},"PeriodicalIF":8.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010949","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Insufficient structural stability and limited lattice oxygen mobility at low temperatures seriously limit the application of perovskite-type oxides in mixed ionic-electronic conducting oxygen-permeable membranes. Engineering the crystal structure and oxygen vacancies by ion doping is an effective strategy to enhance both structural stability and lattice oxygen mobility. Different from conventional metal ion doping, we report that the co-doping of the classical SrCoO3-δ by the non-metallic cation P5+ and the anion Cl− stabilizes the cubic perovskite structure and allows low temperature oxygen permeation due to improved lattice oxygen mobility. In detail, P doped at the Co site transforms the crystal structure from the hexagonal phase to the cubic phase, and Cl doped at the oxygen site weakens the metal-oxygen bond, which significantly enhances the lattice oxygen mobility. Optimal doping concentrations were found to be SrCo0.95P0.05O3-δCl0.05 (SCP5Cl5). Furthermore, by constructing an asymmetric membrane with a sandwich structure, the oxygen permeation flux of the SCP5Cl5 ceramic membrane was up to 1.10 mL min−1 cm−2 at 873 K, which provides an effective strategy for developing oxygen-permeable membranes with high permeation flux at low temperatures.
期刊介绍:
The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.