Cross-sectional surface analysis of magnetic domains, microstructures, and magnetic properties of the low-temperature phase MnBi prepared by low-temperature vacuum sintering

IF 3.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Vacuum Pub Date : 2024-09-26 DOI:10.1016/j.vacuum.2024.113685
{"title":"Cross-sectional surface analysis of magnetic domains, microstructures, and magnetic properties of the low-temperature phase MnBi prepared by low-temperature vacuum sintering","authors":"","doi":"10.1016/j.vacuum.2024.113685","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, the low-temperature phase MnBi prepared by a low-temperature vacuum sintering process at 325 °C was studied. We found a significant increase in the energy product from 2.63 MGOe in the 12-h sintered sample to 3.64 MGOe in the 48-h sintered sample. This improvement is attributed to the solid-liquid diffusion process. Cross-sectional scanning electron microscopy (SEM) reveals that MnBi forms at the external surface of Mn particles and along interior surfaces, notably within cracks. Transmission electron microscopy further demonstrates that the Mn ratio increases and Bi decreases with distance from the crack. The selected area diffraction showed variations in the Mn ratio with distance from cracks and identified both Bi and MnBi phases in the MnBi layer. Magnetic force microscopy (MFM) analysis exhibited large phase shifts indicating repulsive or attractive forces in single ferromagnetic domains. This provides valuable insight into magnetic domains in the MnBi regions near Mn cracks. The MnBi formation model, developed for the vicinity of single cracks with uniform MnBi content, partly explains the magnetic interactions and phase shifts observed near these cracks. These findings provide significant insights into the MnBi microstructural and magnetic properties, potentially useful in tailoring and engineering magnetic structures.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24007310","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the low-temperature phase MnBi prepared by a low-temperature vacuum sintering process at 325 °C was studied. We found a significant increase in the energy product from 2.63 MGOe in the 12-h sintered sample to 3.64 MGOe in the 48-h sintered sample. This improvement is attributed to the solid-liquid diffusion process. Cross-sectional scanning electron microscopy (SEM) reveals that MnBi forms at the external surface of Mn particles and along interior surfaces, notably within cracks. Transmission electron microscopy further demonstrates that the Mn ratio increases and Bi decreases with distance from the crack. The selected area diffraction showed variations in the Mn ratio with distance from cracks and identified both Bi and MnBi phases in the MnBi layer. Magnetic force microscopy (MFM) analysis exhibited large phase shifts indicating repulsive or attractive forces in single ferromagnetic domains. This provides valuable insight into magnetic domains in the MnBi regions near Mn cracks. The MnBi formation model, developed for the vicinity of single cracks with uniform MnBi content, partly explains the magnetic interactions and phase shifts observed near these cracks. These findings provide significant insights into the MnBi microstructural and magnetic properties, potentially useful in tailoring and engineering magnetic structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低温真空烧结制备的低温相锰硼的磁畴、微结构和磁性能的截面分析
在这项工作中,我们研究了通过 325 °C 低温真空烧结工艺制备的低温相 MnBi。我们发现能积从 12 小时烧结样品的 2.63 MGOe 显著增加到 48 小时烧结样品的 3.64 MGOe。这一改进归因于固液扩散过程。横截面扫描电子显微镜(SEM)显示,锰铍在锰颗粒的外表面和内表面形成,尤其是在裂缝内。透射电子显微镜进一步表明,随着与裂纹距离的增加,锰的比率增加,而铋的比率减少。选区衍射显示了锰比随裂纹距离的变化,并确定了锰铋层中的铋相和锰铋相。磁力显微镜(MFM)分析显示出较大的相移,表明单个铁磁畴中存在排斥力或吸引力。这为深入了解锰裂纹附近锰铋区域的磁畴提供了宝贵的信息。针对锰铋含量均匀的单个裂纹附近开发的锰铋形成模型,部分解释了在这些裂纹附近观察到的磁相互作用和相移。这些发现为了解锰铋的微观结构和磁性能提供了重要依据,可能有助于磁性结构的定制和工程设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Vacuum
Vacuum 工程技术-材料科学:综合
CiteScore
6.80
自引率
17.50%
发文量
0
审稿时长
34 days
期刊介绍: Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences. A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below. The scope of the journal includes: 1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes). 2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis. 3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification. 4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.
期刊最新文献
Ethanol recognition based on carbon quantum dots sensitized Ti3C2Tx MXene and its enhancement effect of ultraviolet condition under low temperature Overall fabrication of uniform BN interphase on 2.5D-SiC fabric via precursor-derived methods Microstructure evolution and mechanical properties of brazing seam of SiCp/Al composites-TC4 titanium alloy composite structure with different La content Microstructure evolution, mechanical properties, and corrosion behavior of in-situ TiC/TC4 composites through Mo addition Determination of fast electrons energy absorbed in the air by measuring the concentration of ozone synthesized in electron beam plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1