Ultra-low strain hysteresis in BaTiO3-based piezoelectric multilayer actuators via microstructural texture engineering

IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materiomics Pub Date : 2024-05-29 DOI:10.1016/j.jmat.2024.05.001
Yingchun Liu , Hongjun Zhang , Wenming Shi , Kai Li , Bin Yang , Wenwu Cao , Jiubin Tan
{"title":"Ultra-low strain hysteresis in BaTiO3-based piezoelectric multilayer actuators via microstructural texture engineering","authors":"Yingchun Liu ,&nbsp;Hongjun Zhang ,&nbsp;Wenming Shi ,&nbsp;Kai Li ,&nbsp;Bin Yang ,&nbsp;Wenwu Cao ,&nbsp;Jiubin Tan","doi":"10.1016/j.jmat.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><div>Piezoelectric multilayer actuators (MLAs) possess unique advantages of lower driving voltages and more compact structures than bulk ceramic actuators. However, the internal electrode layers in MLAs inevitably weaken the output and result in relatively lower strain. The hysteresis property of piezoelectric ceramics also significantly limits the positioning accuracy of MLAs. In this work, we adopted a synergistic strategy of crystallographic texturing and domain engineering in BaTiO<sub>3</sub>-based MLAs to enhance strains by improving piezoelectricity while simultaneously restraining the ultra-low hysteresis. We prepared [001]<sub><em>c</em></sub>-oriented (Ba<sub>0.95</sub>Ca<sub>0.05</sub>)(Ti<sub>0.94</sub>Zr<sub>0.055</sub>Sn<sub>0.005</sub>)O<sub>3</sub> (BCTZS) ceramic layers in MLAs through the template grain growth (TGG) method with a texture degree of ∼95%. The textured BCTZS MLAs had a large displacement of 196 nm at 200 V (∼2.4 times that of randomly oriented ones) and achieved ultra-low strain hysteresis (<em>H</em><sub>s</sub>&lt;9%). These almost identical displacement and strain hysteresis in textured MLAs before and after polarization at 200 V indicated better positioning repeatability under various voltage experiences. This finding can be attributed to easier domain switchings, because the high texture degree and the dominant “4O” domain configurations in textured grains accommodated the clamping stress, which decreased the domain wall energy but increased the domain flexibility.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 2","pages":"Article 100882"},"PeriodicalIF":8.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847824001084","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Piezoelectric multilayer actuators (MLAs) possess unique advantages of lower driving voltages and more compact structures than bulk ceramic actuators. However, the internal electrode layers in MLAs inevitably weaken the output and result in relatively lower strain. The hysteresis property of piezoelectric ceramics also significantly limits the positioning accuracy of MLAs. In this work, we adopted a synergistic strategy of crystallographic texturing and domain engineering in BaTiO3-based MLAs to enhance strains by improving piezoelectricity while simultaneously restraining the ultra-low hysteresis. We prepared [001]c-oriented (Ba0.95Ca0.05)(Ti0.94Zr0.055Sn0.005)O3 (BCTZS) ceramic layers in MLAs through the template grain growth (TGG) method with a texture degree of ∼95%. The textured BCTZS MLAs had a large displacement of 196 nm at 200 V (∼2.4 times that of randomly oriented ones) and achieved ultra-low strain hysteresis (Hs<9%). These almost identical displacement and strain hysteresis in textured MLAs before and after polarization at 200 V indicated better positioning repeatability under various voltage experiences. This finding can be attributed to easier domain switchings, because the high texture degree and the dominant “4O” domain configurations in textured grains accommodated the clamping stress, which decreased the domain wall energy but increased the domain flexibility.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过微结构纹理工程实现基于 BaTiO3 的压电多层致动器中的超低应变滞后
与块状陶瓷致动器相比,压电多层致动器(MLA)具有驱动电压更低、结构更紧凑的独特优势。然而,压电多层致动器的内部电极层不可避免地会削弱输出,导致应变相对较低。压电陶瓷的滞后特性也极大地限制了 MLA 的定位精度。在这项工作中,我们在基于 BaTiO3 的 MLA 中采用了晶体纹理和畴工程的协同策略,通过提高压电性来增强应变,同时抑制超低磁滞。我们通过模板晶粒生长(TGG)方法在 MLA 中制备了[001]c 取向(Ba0.95Ca0.05)(Ti0.94Zr0.055Sn0.005)O3(BCTZS)陶瓷层,其纹理度达到 95%。纹理化 BCTZS MLA 在 200 V 下具有 196 nm 的大位移(是随机取向 MLA 的 2.4 倍),并实现了超低应变滞后(Hs<9%)。在 200 V 极化前后,纹理 MLA 的位移和应变滞后几乎相同,这表明在各种电压条件下,定位的可重复性更好。这一发现可归因于更容易的畴切换,因为纹理晶粒中的高纹理度和占主导地位的 "4O "畴构型可容纳箝位应力,这降低了畴壁能量,但增加了畴的柔性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materiomics
Journal of Materiomics Materials Science-Metals and Alloys
CiteScore
14.30
自引率
6.40%
发文量
331
审稿时长
37 days
期刊介绍: The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.
期刊最新文献
Convenient synthesis of hollow tubular In2O3/PDA S-scheme inorganic/organic heterojunction photocatalyst for H2O2 production and its mechanism Synergistic effects lead to high thermoelectric performance of iodine doped pseudo-binary layered GeSb2Te4 Surface oxygen vacancies in amorphous Fe2O3 tailored nonlinear optical properties for ultrafast photonics High temperature magnetoelectric effect in Fe2TeO6 F− surface modified ZnO for enhanced photocatalytic H2O2 production and its fs-TAS investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1