A Euler-lagrange Model of dynamic internal friction

IF 3.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Forces in mechanics Pub Date : 2024-09-23 DOI:10.1016/j.finmec.2024.100291
{"title":"A Euler-lagrange Model of dynamic internal friction","authors":"","doi":"10.1016/j.finmec.2024.100291","DOIUrl":null,"url":null,"abstract":"<div><div>A Euler-Lagrange model of dynamic internal friction is proposed and is shown to match the frequency and decay of oscillations in both simple extension (pull) and cantilever beam experiments. The proposed dynamic internal frictional stress, <span><math><msub><mi>τ</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span>, is proportional to the rate of change of the engineering stress, <span><math><msub><mover><mi>σ</mi><mo>˙</mo></mover><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span>. i.e.<span><span><span><math><mrow><msub><mi>τ</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><msub><mi>μ</mi><mi>m</mi></msub><msub><mover><mi>σ</mi><mo>˙</mo></mover><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>,</mo></mrow></math></span></span></span>with <span><math><msub><mi>μ</mi><mi>m</mi></msub></math></span> the dynamic internal friction coefficient. A single value of the dynamic internal friction coefficient is shown to match the results of the experiments for a number of different geometries of the silicon rubber, Dragon Skin<sup>TM</sup>. Dragon Skin<sup>TM</sup> is used in skin effects for movies and in prosthetics and cushioning applications. It is chosen here because of its ease of preparation and relatively simple non-linear stress-strain response. Because of these characteristics, it provides a simple starting place for simulating more complicated synthetic rubber and biological materials, which are used in a myriad of commercial applications.</div></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359724000374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A Euler-Lagrange model of dynamic internal friction is proposed and is shown to match the frequency and decay of oscillations in both simple extension (pull) and cantilever beam experiments. The proposed dynamic internal frictional stress, τij, is proportional to the rate of change of the engineering stress, σ˙ij. i.e.τij=μmσ˙ij,with μm the dynamic internal friction coefficient. A single value of the dynamic internal friction coefficient is shown to match the results of the experiments for a number of different geometries of the silicon rubber, Dragon SkinTM. Dragon SkinTM is used in skin effects for movies and in prosthetics and cushioning applications. It is chosen here because of its ease of preparation and relatively simple non-linear stress-strain response. Because of these characteristics, it provides a simple starting place for simulating more complicated synthetic rubber and biological materials, which are used in a myriad of commercial applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态内摩擦力的欧拉-滞后模型
提出了动态内摩擦力的欧拉-拉格朗日模型,并证明该模型与简单拉伸(拉)和悬臂梁实验中的振荡频率和衰减相匹配。提出的动态内摩擦应力 τij 与工程应力 σ˙ij 的变化率成正比,即 τij=μmσ˙ij ,其中 μm 为动态内摩擦系数。对于硅橡胶 Dragon SkinTM 的多种不同几何形状,动态内摩擦系数的单一值与实验结果相吻合。Dragon SkinTM 用于电影皮肤特效、假肢和缓冲应用。之所以选择龙皮,是因为它易于制备,而且非线性应力-应变响应相对简单。由于这些特点,它为模拟更复杂的合成橡胶和生物材料提供了一个简单的起点,而合成橡胶和生物材料被广泛应用于各种商业领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Forces in mechanics
Forces in mechanics Mechanics of Materials
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
52 days
期刊最新文献
Enhanced meshfree method with nodal integration for analysis of functionally graded material sandwich curved shells Improved eight-node non-conforming hexahedral element for structures of various shapes A Euler-lagrange Model of dynamic internal friction Static bending analysis of BDFG nanobeams by nonlocal couple stress theory and nonlocal strain gradient theory Response of circular type sandwich panel using JUCO-glass fiber with PU foam under three-point bending loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1