Jagoda J. Manss-Chmielarz , Tobias Morawietz , Aldo S. Gago , K. Andreas Friedrich
{"title":"On-board hydrogen production from urea via electrolysis to promote low-temperature catalytic reduction of NOx emissions","authors":"Jagoda J. Manss-Chmielarz , Tobias Morawietz , Aldo S. Gago , K. Andreas Friedrich","doi":"10.1016/j.coelec.2024.101591","DOIUrl":null,"url":null,"abstract":"<div><div>Nitrogen oxides emissions pose a significant environmental challenge, particularly in heavily industrialized, high-traffic regions. Global NO<sub>x</sub> levels continue to rise, despite various aftertreatment techniques being deployed to mitigate emission levels of combustion engine vehicles. Novel approaches to enhance NO<sub>x</sub> conversion efficiency at low exhaust temperatures (< 200 C) include integrating hydrogen and ammonia injection before selective catalytic reduction modules. Urea electrolysis presents a promising avenue for simultaneous hydrogen and ammonia production. An anion exchange membrane electrolyser emerges as a viable and low-cost solution for on-board hydrogen production, offering compact size and compatibility with existing vehicle systems. Overcoming challenges such as catalyst and component selection, electrolyte viability, and system integration remains critical for realising the full potential of electrolysis-based NO<sub>x</sub> mitigation strategies in passenger vehicles.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"48 ","pages":"Article 101591"},"PeriodicalIF":7.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324001522","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen oxides emissions pose a significant environmental challenge, particularly in heavily industrialized, high-traffic regions. Global NOx levels continue to rise, despite various aftertreatment techniques being deployed to mitigate emission levels of combustion engine vehicles. Novel approaches to enhance NOx conversion efficiency at low exhaust temperatures (< 200 C) include integrating hydrogen and ammonia injection before selective catalytic reduction modules. Urea electrolysis presents a promising avenue for simultaneous hydrogen and ammonia production. An anion exchange membrane electrolyser emerges as a viable and low-cost solution for on-board hydrogen production, offering compact size and compatibility with existing vehicle systems. Overcoming challenges such as catalyst and component selection, electrolyte viability, and system integration remains critical for realising the full potential of electrolysis-based NOx mitigation strategies in passenger vehicles.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •