Kottakkaran Sooppy Nisar , Iqra Naz , Muhammad Asif Zahoor Raja , Muhammad Shoaib
{"title":"Intelligent computing framework to analyze the transmission risk of COVID-19: Meyer wavelet artificial neural networks","authors":"Kottakkaran Sooppy Nisar , Iqra Naz , Muhammad Asif Zahoor Raja , Muhammad Shoaib","doi":"10.1016/j.compbiolchem.2024.108234","DOIUrl":null,"url":null,"abstract":"<div><div>The optimum control methods for the epidemiology of the COVID-19 model are acknowledged using a novel advanced intelligent computing infrastructure that joins artificial neural networks with unsupervised learning-based optimizers i.e., Genetic Algorithms (GA) and sequential quadratic programming (SQP). Unsupervised learning strategy is provided which depends on the wavelet basis's sequential deconstruction of stochastic data. The weights or selection values of neural networks are utilizing cumulative algorithms of Meyer wavelet artificial neural networks (MWANNs) optimized with global search Genetic Algorithms (GAs) and Sequential Quadratic Programming (SQP), referred to as MWANNs-GA-SQP and the design technique is utilized to determine the COVID-19 model for five different scenarios employing different step sizes and input intervals. The findings of this research article examined that in order to minimize the total disease transmission at the lowest cost and complexity, safety, focused medical care, and exterior sterilization methods applicability. The provided data is validated through various graphical simulations, which surely authenticate the effectiveness and robustness of the proposed solver. The suggested solver, MWANNs-GA-SQP, is tested in a variety of circumstances to examine that how reliable, safe, and tolerant. Using the proposed MWANNs hubristic intelligent approach, an objective optimization function is created in feed forward neural networking to minimize the mean square error. An investigation of the hybrid GA-SQP is used to confirm the accuracy and dependability of the MWANNs model results. Mean absolute graphs have been constructed to assess the integrity and efficiency of the proposed methodology. The accuracy and reliability of the suggested method are demonstrated by constantly achieving maximum variables of analytical assessment criteria computed for a large appropriate variety of distinct trials.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"113 ","pages":"Article 108234"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124002226","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The optimum control methods for the epidemiology of the COVID-19 model are acknowledged using a novel advanced intelligent computing infrastructure that joins artificial neural networks with unsupervised learning-based optimizers i.e., Genetic Algorithms (GA) and sequential quadratic programming (SQP). Unsupervised learning strategy is provided which depends on the wavelet basis's sequential deconstruction of stochastic data. The weights or selection values of neural networks are utilizing cumulative algorithms of Meyer wavelet artificial neural networks (MWANNs) optimized with global search Genetic Algorithms (GAs) and Sequential Quadratic Programming (SQP), referred to as MWANNs-GA-SQP and the design technique is utilized to determine the COVID-19 model for five different scenarios employing different step sizes and input intervals. The findings of this research article examined that in order to minimize the total disease transmission at the lowest cost and complexity, safety, focused medical care, and exterior sterilization methods applicability. The provided data is validated through various graphical simulations, which surely authenticate the effectiveness and robustness of the proposed solver. The suggested solver, MWANNs-GA-SQP, is tested in a variety of circumstances to examine that how reliable, safe, and tolerant. Using the proposed MWANNs hubristic intelligent approach, an objective optimization function is created in feed forward neural networking to minimize the mean square error. An investigation of the hybrid GA-SQP is used to confirm the accuracy and dependability of the MWANNs model results. Mean absolute graphs have been constructed to assess the integrity and efficiency of the proposed methodology. The accuracy and reliability of the suggested method are demonstrated by constantly achieving maximum variables of analytical assessment criteria computed for a large appropriate variety of distinct trials.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.