Chi Deng, Hui Zhang, Yang Du, Xia Du, Yan Shang, Hongda Yang, Xuan Wang, Qingguo Chen, Zesheng Li
{"title":"Theoretical Study of the Grafting Reaction of a New Antioxidant to Cross-Linked Polyethylene and the Antioxidation Mechanism","authors":"Chi Deng, Hui Zhang, Yang Du, Xia Du, Yan Shang, Hongda Yang, Xuan Wang, Qingguo Chen, Zesheng Li","doi":"10.1002/qua.27492","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cross-linked polyethylene (XLPE) insulation has been used in most advanced power cable technology. Strategies for decreasing the amount of antioxidants have been proposed to reduce conductivity further. In this study, the structural design of a new dual-functional antioxidant has been established. Theoretical investigation of the antioxidative behavior and grafting reaction of the new antioxidant by ultraviolet (UV) radiation was performed using the density functional theory (DFT) method. The reaction potential energy information of the six reaction channels at the B3LYP/6-311+G (<i>d,p</i>) level was obtained. Frontier molecular orbitals (MOs) and natural bond orbital (NBO) charge populations of the designed antioxidant molecule were analyzed. The calculation results indicate that the reaction Gibbs energy barrier of the designed antioxidant and O<sub>2</sub> required to achieve the antioxidative effect is about 0.8 eV lower than that of the polyethylene chain. Moreover, due to the lower reaction Gibbs energy barrier, the reaction active site of the designed antioxidant accepting H is located on the O of the CO groups. The proposed mechanism would be beneficial to understanding the molecular functions of antioxidants and further broadening the design ideas of thermoplastic insulation materials for future advanced power cables.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27492","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cross-linked polyethylene (XLPE) insulation has been used in most advanced power cable technology. Strategies for decreasing the amount of antioxidants have been proposed to reduce conductivity further. In this study, the structural design of a new dual-functional antioxidant has been established. Theoretical investigation of the antioxidative behavior and grafting reaction of the new antioxidant by ultraviolet (UV) radiation was performed using the density functional theory (DFT) method. The reaction potential energy information of the six reaction channels at the B3LYP/6-311+G (d,p) level was obtained. Frontier molecular orbitals (MOs) and natural bond orbital (NBO) charge populations of the designed antioxidant molecule were analyzed. The calculation results indicate that the reaction Gibbs energy barrier of the designed antioxidant and O2 required to achieve the antioxidative effect is about 0.8 eV lower than that of the polyethylene chain. Moreover, due to the lower reaction Gibbs energy barrier, the reaction active site of the designed antioxidant accepting H is located on the O of the CO groups. The proposed mechanism would be beneficial to understanding the molecular functions of antioxidants and further broadening the design ideas of thermoplastic insulation materials for future advanced power cables.
期刊介绍:
Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.