{"title":"Computational design of energy-related materials: From first-principles calculations to machine learning","authors":"Haibo Xue, Guanjian Cheng, Wan-Jian Yin","doi":"10.1002/wcms.1732","DOIUrl":null,"url":null,"abstract":"<p>Energy-related materials are crucial for advancing energy technologies, improving efficiency, reducing environmental impacts, and supporting sustainable development. Designing and discovering these materials through computational techniques necessitates a comprehensive understanding of the material space, which is defined by the constituent atoms, composition, and structure. Depending on the search space involved in the investigation, the computational materials design can be categorized into four primary approaches: atomic substitution in fixed prototype structures, crystal structure prediction (CSP), variable-composition CSP, and inverse design across the entire materials space. This review provides an overview of these paradigms, detailing the concepts, strategies, and applications pertinent to energy-related materials. The progression from first-principles calculations to machine learning techniques is emphasized, with the aim of enhancing understanding and elucidating new advancements in computationally design of energy-related materials.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"14 5","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1732","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Energy-related materials are crucial for advancing energy technologies, improving efficiency, reducing environmental impacts, and supporting sustainable development. Designing and discovering these materials through computational techniques necessitates a comprehensive understanding of the material space, which is defined by the constituent atoms, composition, and structure. Depending on the search space involved in the investigation, the computational materials design can be categorized into four primary approaches: atomic substitution in fixed prototype structures, crystal structure prediction (CSP), variable-composition CSP, and inverse design across the entire materials space. This review provides an overview of these paradigms, detailing the concepts, strategies, and applications pertinent to energy-related materials. The progression from first-principles calculations to machine learning techniques is emphasized, with the aim of enhancing understanding and elucidating new advancements in computationally design of energy-related materials.
期刊介绍:
Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.