Machine-learning-assisted intelligent synthesis of UiO-66(Ce): Balancing the trade-off between structural defects and thermal stability for efficient hydrogenation of Dicyclopentadiene

Jing Lin, Tao Ban, Tian Li, Ye Sun, Shenglan Zhou, Rushuo Li, Yanjing Su, Jitti Kasemchainan, Hongyi Gao, Lei Shi, Ge Wang
{"title":"Machine-learning-assisted intelligent synthesis of UiO-66(Ce): Balancing the trade-off between structural defects and thermal stability for efficient hydrogenation of Dicyclopentadiene","authors":"Jing Lin,&nbsp;Tao Ban,&nbsp;Tian Li,&nbsp;Ye Sun,&nbsp;Shenglan Zhou,&nbsp;Rushuo Li,&nbsp;Yanjing Su,&nbsp;Jitti Kasemchainan,&nbsp;Hongyi Gao,&nbsp;Lei Shi,&nbsp;Ge Wang","doi":"10.1002/mgea.61","DOIUrl":null,"url":null,"abstract":"<p>Metal-organic frameworks (MOFs), renowned for structural diversity and design flexibility, exhibit potential in catalysis. However, the pursuit of higher catalytic activity through defects often compromises stability, requiring a delicate balance. Traditional trial-and-error method for optimizing synthesis parameters within the complex chemical space is inefficient. Herein, taking the typical MOF UiO-66(Ce) as an illustrative example, a closed loop workflow is built, which integrates machine learning (ML)-assissted prediction, multi-objective optimization (MOO) and experimental preparation to synergistically optimize the defect content and thermal stability of UiO-66(Ce) for efficient hydrogenation of dicyclopentadiene (DCPD). An automatic data extraction program ensures data accuracy, establishing a high-quality database. ML is employed to explore the intricate synthesis-structure-property correlations, enabling precise delineation of pure-phase subspace and accurate predictions of properties. After two iterations, MOO model identifies optimal protocols for high defect content (&gt;40%) and thermal stability (&gt;300°C). The optimized UiO-66(Ce) exhibits superior catalytic performance in hydrogenation of DCPD, validating the precision and reliability of our methodology. This ML-assisted approach offers a valuable paradigm for solving the trade-off riddle in materials field.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"2 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.61","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-organic frameworks (MOFs), renowned for structural diversity and design flexibility, exhibit potential in catalysis. However, the pursuit of higher catalytic activity through defects often compromises stability, requiring a delicate balance. Traditional trial-and-error method for optimizing synthesis parameters within the complex chemical space is inefficient. Herein, taking the typical MOF UiO-66(Ce) as an illustrative example, a closed loop workflow is built, which integrates machine learning (ML)-assissted prediction, multi-objective optimization (MOO) and experimental preparation to synergistically optimize the defect content and thermal stability of UiO-66(Ce) for efficient hydrogenation of dicyclopentadiene (DCPD). An automatic data extraction program ensures data accuracy, establishing a high-quality database. ML is employed to explore the intricate synthesis-structure-property correlations, enabling precise delineation of pure-phase subspace and accurate predictions of properties. After two iterations, MOO model identifies optimal protocols for high defect content (>40%) and thermal stability (>300°C). The optimized UiO-66(Ce) exhibits superior catalytic performance in hydrogenation of DCPD, validating the precision and reliability of our methodology. This ML-assisted approach offers a valuable paradigm for solving the trade-off riddle in materials field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习辅助智能合成 UiO-66(Ce):平衡结构缺陷与热稳定性之间的权衡,实现双环戊二烯的高效氢化
金属有机框架(MOFs)以结构多样性和设计灵活性而著称,在催化方面具有潜力。然而,通过缺陷来追求更高的催化活性往往会损害稳定性,这就需要一种微妙的平衡。在复杂化学空间内优化合成参数的传统试错法效率低下。本文以典型的 MOF UiO-66(Ce)为例,建立了一个闭环工作流程,将机器学习(ML)-缺陷预测、多目标优化(MOO)和实验制备整合在一起,协同优化 UiO-66(Ce)的缺陷含量和热稳定性,从而实现双环戊二烯(DCPD)的高效氢化。自动数据提取程序确保了数据的准确性,从而建立了一个高质量的数据库。采用 ML 方法探索错综复杂的合成-结构-性能相关性,从而实现纯相子空间的精确划分和性能的准确预测。经过两次迭代,MOO 模型确定了高缺陷含量(40%)和热稳定性(300°C)的最佳方案。优化后的 UiO-66(Ce)在二氯二苯并二噁英的氢化过程中表现出卓越的催化性能,验证了我们方法的精确性和可靠性。这种 ML 辅助方法为解决材料领域的权衡之谜提供了一个宝贵的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cover Image Issue Information Machine-learning-assisted intelligent synthesis of UiO-66(Ce): Balancing the trade-off between structural defects and thermal stability for efficient hydrogenation of Dicyclopentadiene High-throughput study of X-ray-induced synthesis of flower-like CuxO Systematic assessment of various universal machine-learning interatomic potentials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1