Systematic assessment of various universal machine-learning interatomic potentials

Haochen Yu, Matteo Giantomassi, Giuliana Materzanini, Junjie Wang, Gian-Marco Rignanese
{"title":"Systematic assessment of various universal machine-learning interatomic potentials","authors":"Haochen Yu,&nbsp;Matteo Giantomassi,&nbsp;Giuliana Materzanini,&nbsp;Junjie Wang,&nbsp;Gian-Marco Rignanese","doi":"10.1002/mgea.58","DOIUrl":null,"url":null,"abstract":"<p>Machine-learning interatomic potentials have revolutionized materials modeling at the atomic scale. Thanks to these, it is now indeed possible to perform simulations of ab initio quality over very large time and length scales. More recently, various universal machine-learning models have been proposed as an out-of-box approach avoiding the need to train and validate specific potentials for each particular material of interest. In this paper, we review and evaluate four different universal machine-learning interatomic potentials (uMLIPs), all based on graph neural network architectures which have demonstrated transferability from one chemical system to another. The evaluation procedure relies on data both from a recent verification study of density-functional-theory implementations and from the Materials Project. Through this comprehensive evaluation, we aim to provide guidance to materials scientists in selecting suitable models for their specific research problems, offer recommendations for model selection and optimization, and stimulate discussion on potential areas for improvement in current machine-learning methodologies in materials science.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"2 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.58","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine-learning interatomic potentials have revolutionized materials modeling at the atomic scale. Thanks to these, it is now indeed possible to perform simulations of ab initio quality over very large time and length scales. More recently, various universal machine-learning models have been proposed as an out-of-box approach avoiding the need to train and validate specific potentials for each particular material of interest. In this paper, we review and evaluate four different universal machine-learning interatomic potentials (uMLIPs), all based on graph neural network architectures which have demonstrated transferability from one chemical system to another. The evaluation procedure relies on data both from a recent verification study of density-functional-theory implementations and from the Materials Project. Through this comprehensive evaluation, we aim to provide guidance to materials scientists in selecting suitable models for their specific research problems, offer recommendations for model selection and optimization, and stimulate discussion on potential areas for improvement in current machine-learning methodologies in materials science.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对各种通用机器学习原子间势能的系统评估
机器学习原子间势能彻底改变了原子尺度的材料建模。有了机器学习原子间势,现在确实可以在非常大的时间和长度尺度上进行自证质量的模拟。最近,人们提出了各种通用机器学习模型,作为一种开箱即用的方法,避免了为每种特定材料训练和验证特定电位的需要。在本文中,我们回顾并评估了四种不同的通用机器学习原子间位势(uMLIPs),它们都基于图神经网络架构,已证明可从一个化学系统转移到另一个化学系统。评估程序依赖于最近对密度函数理论实现的验证研究和材料项目的数据。通过这项综合评估,我们旨在为材料科学家提供指导,帮助他们针对具体研究问题选择合适的模型,为模型选择和优化提供建议,并激发对当前材料科学机器学习方法潜在改进领域的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cover Image Issue Information Machine-learning-assisted intelligent synthesis of UiO-66(Ce): Balancing the trade-off between structural defects and thermal stability for efficient hydrogenation of Dicyclopentadiene High-throughput study of X-ray-induced synthesis of flower-like CuxO Systematic assessment of various universal machine-learning interatomic potentials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1