Quantifying the Role of Calibration Strategies on Surface-Subsurface Hydrologic Model Performance

IF 3.2 3区 地球科学 Q1 Environmental Science Hydrological Processes Pub Date : 2024-10-09 DOI:10.1002/hyp.15298
Salam A. Abbas, Ryan T. Bailey, Jeremy T. White, Jeffrey G. Arnold, Michael J. White
{"title":"Quantifying the Role of Calibration Strategies on Surface-Subsurface Hydrologic Model Performance","authors":"Salam A. Abbas,&nbsp;Ryan T. Bailey,&nbsp;Jeremy T. White,&nbsp;Jeffrey G. Arnold,&nbsp;Michael J. White","doi":"10.1002/hyp.15298","DOIUrl":null,"url":null,"abstract":"<p>Distributed, coupled surface-groundwater hydrologic models are high-dimensional, given the necessity to reflect the spatially diverse nature of complex hydrologic processes. Furthermore, inverse/inference problems involving these high-dimensional models are naturally ill-posed, given the limited information content of state observations that are typically assimilated. Many inversion/inference algorithms do not cope well with high dimensionality, leaving the practitioner to make subjective choices related to uncertain model inputs. The objective of this study is to evaluate the impact of these subjective calibration choices within a formal sensitivity analysis, uncertainty analysis, and parameters estimation (SA-UA-PE) framework on model testing for a surface-subsurface hydrologic model. In doing so, we address the concepts of ‘over-parameterisation’ and ‘under-parameterisation’. We completed a series of numerical experiments, testing several otherwise subjective aspects of the calibration process: (1) the number (5, 10, 15, 20) and type (soil, aquifer, land surface, channel) of calibration parameters selected); (2) the type of state observations assimilated (streamflow, groundwater head); and (3) the length of testing period (1 to 14 years), using monthly streamflow and groundwater head as testing data. The experiments were completed for models of the Winnebago River watershed (Minnesota, Iowa), (significant tile drainage) and the Nanticoke River watershed (Delaware, Maryland (significant groundwater-channel interactions). The selected hydrologic model is SWAT+, using the <i>gwflow</i> module for physically based groundwater storage and flow modelling, and simulations are run for the 2000–2015 period. Through this process, we found that increasing the number of parameters from 5 to 15 improves the representation of streamflow, principally through an improvement of groundwater storage representation and baseflow generation, but minimal improvement when increasing to 20 parameters. Therefore, the SA-UA-PE process can be optimised based on an ideal number of parameters that yield adequate results while maintaining a lower computational burden. The method presented here can be used for any watershed, using integrated surface-subsurface hydrologic models.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.15298","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.15298","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed, coupled surface-groundwater hydrologic models are high-dimensional, given the necessity to reflect the spatially diverse nature of complex hydrologic processes. Furthermore, inverse/inference problems involving these high-dimensional models are naturally ill-posed, given the limited information content of state observations that are typically assimilated. Many inversion/inference algorithms do not cope well with high dimensionality, leaving the practitioner to make subjective choices related to uncertain model inputs. The objective of this study is to evaluate the impact of these subjective calibration choices within a formal sensitivity analysis, uncertainty analysis, and parameters estimation (SA-UA-PE) framework on model testing for a surface-subsurface hydrologic model. In doing so, we address the concepts of ‘over-parameterisation’ and ‘under-parameterisation’. We completed a series of numerical experiments, testing several otherwise subjective aspects of the calibration process: (1) the number (5, 10, 15, 20) and type (soil, aquifer, land surface, channel) of calibration parameters selected); (2) the type of state observations assimilated (streamflow, groundwater head); and (3) the length of testing period (1 to 14 years), using monthly streamflow and groundwater head as testing data. The experiments were completed for models of the Winnebago River watershed (Minnesota, Iowa), (significant tile drainage) and the Nanticoke River watershed (Delaware, Maryland (significant groundwater-channel interactions). The selected hydrologic model is SWAT+, using the gwflow module for physically based groundwater storage and flow modelling, and simulations are run for the 2000–2015 period. Through this process, we found that increasing the number of parameters from 5 to 15 improves the representation of streamflow, principally through an improvement of groundwater storage representation and baseflow generation, but minimal improvement when increasing to 20 parameters. Therefore, the SA-UA-PE process can be optimised based on an ideal number of parameters that yield adequate results while maintaining a lower computational burden. The method presented here can be used for any watershed, using integrated surface-subsurface hydrologic models.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量化校准策略对地表-地下水模型性能的影响
分布式地表水-地下水耦合水文模型是高维模型,因为必须反映复杂水文过程的空间多样性。此外,考虑到通常同化的状态观测信息含量有限,涉及这些高维模型的反演/推理问题自然是难以解决的。许多反演/推理算法都不能很好地应对高维度问题,使实践者不得不对不确定的模型输入做出主观选择。本研究的目的是在正式的敏感性分析、不确定性分析和参数估计(SA-UA-PE)框架内,评估这些主观校准选择对地表-地下水模型试验的影响。为此,我们讨论了 "参数过高 "和 "参数过低 "的概念。我们完成了一系列数值实验,对校准过程中的几个主观方面进行了测试:(1) 所选校准参数的数量(5、10、15、20)和类型(土壤、含水层、地表、河道);(2) 同化状态观测的类型(溪流、地下水位);(3) 测试期(1 至 14 年),使用月溪流和地下水位作为测试数据。温尼贝戈河流域(明尼苏达州、爱荷华州)(重要的瓦片排水)和南蒂科克河流域(特拉华州、马里兰州(重要的地下水-河道相互作用)的模型试验已经完成。所选的水文模型是 SWAT+,使用 gwflow 模块进行基于物理的地下水存储和流量建模,模拟时间为 2000-2015 年。通过这一过程,我们发现,将参数数量从 5 个增加到 15 个,主要是通过改进地下水存储表示和基流生成来改善对溪流的表示,但当参数增加到 20 个时,改善效果甚微。因此,SA-UA-PE 过程可以根据理想的参数数量进行优化,既能产生足够的结果,又能保持较低的计算负担。本文介绍的方法可用于任何流域,使用地表-地下综合水文模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Hydrological Processes
Hydrological Processes 环境科学-水资源
CiteScore
6.00
自引率
12.50%
发文量
313
审稿时长
2-4 weeks
期刊介绍: Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.
期刊最新文献
A Comprehensive Evaluation of Agricultural Drought Vulnerability Using Fuzzy-AHP-Based Composite Index Integrating Sensitivity and Adaptive Capacity A Tale of Two Storms: Inter-Storm Variability of Stable Water Isotopes in a Solute Transport Model Geostatistical Interpolation Approach for Improving Flood Simulation Within a Data-Scarce Region in the Tibetan Plateau Assessing the Hydrological Response to Land Use Changes Linking SWAT and CA-Markov Models Parameterizing Haverkamp Model From the Steady-State of Numerically Generated Infiltration: Influence of Algorithms for Steady-State Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1