Construction of novel dual wave-absorbing ZnFe2O4/CNTs nanoparticles with more hotspots for enhanced microwave-induced catalytic activity:Performance and mechanism

IF 44 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM The Lancet Diabetes & Endocrinology Pub Date : 2024-10-11 DOI:10.1016/j.ceramint.2024.10.134
Lei Jiang, Dan Wu, Fushuai Yu, Ruolin Ni, Jun Wang, Yongcai Zhang, Zhaohong Zhang, Shuang Xue
{"title":"Construction of novel dual wave-absorbing ZnFe2O4/CNTs nanoparticles with more hotspots for enhanced microwave-induced catalytic activity:Performance and mechanism","authors":"Lei Jiang, Dan Wu, Fushuai Yu, Ruolin Ni, Jun Wang, Yongcai Zhang, Zhaohong Zhang, Shuang Xue","doi":"10.1016/j.ceramint.2024.10.134","DOIUrl":null,"url":null,"abstract":"In this study, novel dual wave-absorbing ZnFe<sub>2</sub>O<sub>4</sub>/CNTs nanoparticles were successfully fabricated using a microwave hydrothermal method and applied for enhanced microwave-induced catalytic degradation of bisphenol A (BPA) in aqueous solution. The effects of various process parameters, including Fe<sup>3+</sup> concentration (mass ratio of ZnFe<sub>2</sub>O<sub>4</sub> to CNTs), MW irradiation time, MW power, initial BPA concentration, and catalyst dose on the degradation process were thoroughly assessed. The results indicate that ZnFe<sub>2</sub>O<sub>4</sub>/CNTs nanoparticles effectively utilize MW energy to generate more hot spots and exhibit superior MW catalytic activity at a 1.0:10.0 mass ratio (ZnFe<sub>2</sub>O<sub>4</sub>:CNTs), due to the synergistic effect between ZnFe<sub>2</sub>O<sub>4</sub> nanoparticles and CNTs under MW irradiation. Additionally, hydroxyl radicals (·OH) play a major role in the degradation process, while superoxide radicals (·O<sub>2</sub><sup>−</sup>) and holes (h<sup>+</sup>) play relatively minor roles. Potential intermediates and degradation pathways in the ZnFe<sub>2</sub>O<sub>4</sub>/CNTs/MW system have also been identified. Thus, the integrated ZnFe<sub>2</sub>O<sub>4</sub>/CNTs/MW technology shows great promise for treating environmental endocrine disruptors (EEDs) in water and wastewater.","PeriodicalId":48790,"journal":{"name":"The Lancet Diabetes & Endocrinology","volume":"55 1","pages":""},"PeriodicalIF":44.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Lancet Diabetes & Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ceramint.2024.10.134","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, novel dual wave-absorbing ZnFe2O4/CNTs nanoparticles were successfully fabricated using a microwave hydrothermal method and applied for enhanced microwave-induced catalytic degradation of bisphenol A (BPA) in aqueous solution. The effects of various process parameters, including Fe3+ concentration (mass ratio of ZnFe2O4 to CNTs), MW irradiation time, MW power, initial BPA concentration, and catalyst dose on the degradation process were thoroughly assessed. The results indicate that ZnFe2O4/CNTs nanoparticles effectively utilize MW energy to generate more hot spots and exhibit superior MW catalytic activity at a 1.0:10.0 mass ratio (ZnFe2O4:CNTs), due to the synergistic effect between ZnFe2O4 nanoparticles and CNTs under MW irradiation. Additionally, hydroxyl radicals (·OH) play a major role in the degradation process, while superoxide radicals (·O2) and holes (h+) play relatively minor roles. Potential intermediates and degradation pathways in the ZnFe2O4/CNTs/MW system have also been identified. Thus, the integrated ZnFe2O4/CNTs/MW technology shows great promise for treating environmental endocrine disruptors (EEDs) in water and wastewater.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建具有更多热点的新型 ZnFe2O4/CNTs 双吸波纳米粒子,增强微波诱导催化活性:性能与机理
本研究采用微波水热法成功制备了新型双吸波 ZnFe2O4/CNTs 纳米粒子,并将其用于增强微波诱导催化降解水溶液中的双酚 A(BPA)。研究深入评估了各种工艺参数,包括 Fe3+ 浓度(ZnFe2O4 与 CNTs 的质量比)、微波辐照时间、微波功率、初始双酚 A 浓度和催化剂剂量对降解过程的影响。结果表明,当 ZnFe2O4 与 CNTs 的质量比(ZnFe2O4:CNTs)为 1.0:10.0 时,ZnFe2O4/CNTs 纳米颗粒能有效地利用 MW 能量产生更多的热点,并表现出更高的 MW 催化活性,这是由于 ZnFe2O4 纳米颗粒和 CNTs 在 MW 辐照下产生了协同效应。此外,羟基自由基(-OH)在降解过程中起主要作用,而超氧自由基(-O2-)和空穴(h+)的作用相对较小。此外,还确定了 ZnFe2O4/CNTs/MW 系统中的潜在中间产物和降解途径。因此,ZnFe2O4/CNTs/MW 集成技术在处理水和废水中的环境内分泌干扰物 (EED) 方面大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Lancet Diabetes & Endocrinology
The Lancet Diabetes & Endocrinology ENDOCRINOLOGY & METABOLISM-
CiteScore
61.50
自引率
1.60%
发文量
371
期刊介绍: The Lancet Diabetes & Endocrinology, an independent journal with a global perspective and strong clinical focus, features original clinical research, expert reviews, news, and opinion pieces in each monthly issue. Covering topics like diabetes, obesity, nutrition, and more, the journal provides insights into clinical advances and practice-changing research worldwide. It welcomes original research advocating change or shedding light on clinical practice, as well as informative reviews on related topics, especially those with global health importance and relevance to low-income and middle-income countries. The journal publishes various content types, including Articles, Reviews, Comments, Correspondence, Health Policy, and Personal Views, along with Series and Commissions aiming to drive positive change in clinical practice and health policy in diabetes and endocrinology.
期刊最新文献
The promise and hope of GLP-1 receptor agonists Effects of GLP-1 receptor agonists on kidney and cardiovascular disease outcomes: a meta-analysis of randomised controlled trials Thyroidectomy without radioiodine in patients with low-risk thyroid cancer: 5 years of follow-up of the prospective randomised ESTIMABL2 trial One step closer to the end of postoperative radioactive iodine thyroid remnant ablation Overweight and obesity among Israeli adolescents and the risk for serious morbidity in early young adulthood: a nationwide retrospective cohort study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1