Enhanced energy storage performance of high entropy (1-x)(Na0.5Li0.5NbO3)-x(Sr0.5Bi0.5)(Fe0.5Ti0.25Zr0.25)O3 dielectric ceramics through non-equivalent ion doping

IF 5.1 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Ceramics International Pub Date : 2025-03-01 DOI:10.1016/j.ceramint.2024.12.353
Y.Q. Guo , Aditya Jain , H.Z. Zhou , Y.G. Wang
{"title":"Enhanced energy storage performance of high entropy (1-x)(Na0.5Li0.5NbO3)-x(Sr0.5Bi0.5)(Fe0.5Ti0.25Zr0.25)O3 dielectric ceramics through non-equivalent ion doping","authors":"Y.Q. Guo ,&nbsp;Aditya Jain ,&nbsp;H.Z. Zhou ,&nbsp;Y.G. Wang","doi":"10.1016/j.ceramint.2024.12.353","DOIUrl":null,"url":null,"abstract":"<div><div>High entropy dielectric ceramics with excellent relaxation characteristics are ideal materials for pulse capacitors. In this study, a high entropy dielectric ceramic based on NaNbO<sub>3</sub> was engineered to enhance relaxation properties through non-equivalent ion substitution and increased entropy. The composition studied was (1-<em>x</em>)(Na<sub>0.5</sub>Li<sub>0.5</sub>NbO<sub>3</sub>) - <em>x</em>(Sr<sub>0.5</sub>Bi<sub>0.5</sub>)(Fe<sub>0.5</sub>Ti<sub>0.25</sub>Zr<sub>0.25</sub>)O<sub>3</sub> (NLN-SBFTZ) with <em>x</em> = 0, 0.15, 0.20, and 0.25. The introduction of non-equivalent ions (Sr<sub>0.5</sub>Bi<sub>0.5</sub>)<sup>5/2+</sup> and (Fe<sub>0.5</sub>Ti<sub>0.25</sub>Zr<sub>0.25</sub>)<sup>7/2+</sup>, significantly increases the configurational entropy (Δ<em>S</em><sub>config</sub>). With a breakdown field strength of 500 kV/cm, the modified ceramics sample (<em>x</em> = 0.20) shows a recoverable energy density (<em>W</em><sub><em>rec</em></sub>) of 4.70 J/cm<sup>3</sup> and an energy efficiency (<em>η</em>) of 83.5 %, surpassing the performance of undoped samples (<em>W</em><sub><em>rec</em></sub> = 0.15 J/cm<sup>3</sup>, <em>η</em> = 43.2 %). These results confirm that the high entropy design strategy via non-equivalent ion doping effectively enhances the energy storage capabilities of lead-free dielectric materials.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"51 7","pages":"Pages 9199-9208"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224060243","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

High entropy dielectric ceramics with excellent relaxation characteristics are ideal materials for pulse capacitors. In this study, a high entropy dielectric ceramic based on NaNbO3 was engineered to enhance relaxation properties through non-equivalent ion substitution and increased entropy. The composition studied was (1-x)(Na0.5Li0.5NbO3) - x(Sr0.5Bi0.5)(Fe0.5Ti0.25Zr0.25)O3 (NLN-SBFTZ) with x = 0, 0.15, 0.20, and 0.25. The introduction of non-equivalent ions (Sr0.5Bi0.5)5/2+ and (Fe0.5Ti0.25Zr0.25)7/2+, significantly increases the configurational entropy (ΔSconfig). With a breakdown field strength of 500 kV/cm, the modified ceramics sample (x = 0.20) shows a recoverable energy density (Wrec) of 4.70 J/cm3 and an energy efficiency (η) of 83.5 %, surpassing the performance of undoped samples (Wrec = 0.15 J/cm3, η = 43.2 %). These results confirm that the high entropy design strategy via non-equivalent ion doping effectively enhances the energy storage capabilities of lead-free dielectric materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ceramics International
Ceramics International 工程技术-材料科学:硅酸盐
CiteScore
9.40
自引率
15.40%
发文量
4558
审稿时长
25 days
期刊介绍: Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties. Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour. Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.
期刊最新文献
Enhanced energy storage performance of high entropy (1-x)(Na0.5Li0.5NbO3)-x(Sr0.5Bi0.5)(Fe0.5Ti0.25Zr0.25)O3 dielectric ceramics through non-equivalent ion doping Microstructural evolution and enhanced piezoelectric properties of 0.5Pb(Ni1/3Nb2/3)O3-0.16PbZrO3-0.34PbTiO3 ceramics textured by two-dimensionally-dispersed template grain growth Temperature dependence of two-dimensional structural evolution of monocrystalline 6H-SiC with vacancy and processing defects Enhanced electrical properties and depolarization temperature of BF-BT ceramics via Mn2+ and Sc3+ Co-doping and direct reaction sintering A ceramic coating from polymer-derived SiCNO for high-temperature electrical insulation on Ni-based alloy substrates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1