Soeren Ahmerkamp, Cesar O. Pacherres, Maria Mosshammer, Mathilde Godefroid, Michael Wind-Hansen, Marcel Kuypers, Lars Behrendt, Klaus Koren, Michael Kühl
{"title":"Novel Approach for Lifetime-Proportional Luminescence Imaging Using Frame Straddling","authors":"Soeren Ahmerkamp, Cesar O. Pacherres, Maria Mosshammer, Mathilde Godefroid, Michael Wind-Hansen, Marcel Kuypers, Lars Behrendt, Klaus Koren, Michael Kühl","doi":"10.1021/acssensors.4c01828","DOIUrl":null,"url":null,"abstract":"Optode-based chemical imaging is a rapidly evolving field that has substantially enhanced our understanding of the role of microenvironments and chemical gradients in biogeochemistry, microbial ecology, and biomedical sciences. Progress in sensor chemistry has resulted in a broadened spectrum of analytes, alongside enhancements in sensor performance (e.g., sensitivity, brightness, and photostability). However, existing imaging techniques are often costly, challenging to implement, and limited in their recording speed. Here we use the “frame-straddling” technique, originally developed for particle image velocimetry for imaging the O<sub>2</sub>-dependent, integrated luminescence decay of optical O<sub>2</sub> sensor materials. The method synchronizes short excitation pulses and camera exposures to capture two frames at varying brightness, where the first excitation pulse occurs at the end of the exposure of the first frame and the second excitation pulse at the beginning of the second frame. Here the first frame truncates the luminescence decay, whereas the second frame fully captures it. The difference between the frames quantifies the integral of the luminescence decay curve, which is proportional to the luminescence lifetime, at time scales below one millisecond. Short excitation pulses avoid depopulation of the ground state of luminophores, resulting in a linear Stern–Volmer response with increasing concentrations of the quencher (O<sub>2</sub>), which can be predicted through a simple model. This methodology is compatible with a wide range of camera systems, making it a versatile tool for various optode based chemical imaging applications. We showcase the utility of frame straddling in measuring O<sub>2</sub> dynamics around algae and by observing O<sub>2</sub> scavenging sodium dithionite particles sinking through oxygenated water.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"32 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c01828","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Optode-based chemical imaging is a rapidly evolving field that has substantially enhanced our understanding of the role of microenvironments and chemical gradients in biogeochemistry, microbial ecology, and biomedical sciences. Progress in sensor chemistry has resulted in a broadened spectrum of analytes, alongside enhancements in sensor performance (e.g., sensitivity, brightness, and photostability). However, existing imaging techniques are often costly, challenging to implement, and limited in their recording speed. Here we use the “frame-straddling” technique, originally developed for particle image velocimetry for imaging the O2-dependent, integrated luminescence decay of optical O2 sensor materials. The method synchronizes short excitation pulses and camera exposures to capture two frames at varying brightness, where the first excitation pulse occurs at the end of the exposure of the first frame and the second excitation pulse at the beginning of the second frame. Here the first frame truncates the luminescence decay, whereas the second frame fully captures it. The difference between the frames quantifies the integral of the luminescence decay curve, which is proportional to the luminescence lifetime, at time scales below one millisecond. Short excitation pulses avoid depopulation of the ground state of luminophores, resulting in a linear Stern–Volmer response with increasing concentrations of the quencher (O2), which can be predicted through a simple model. This methodology is compatible with a wide range of camera systems, making it a versatile tool for various optode based chemical imaging applications. We showcase the utility of frame straddling in measuring O2 dynamics around algae and by observing O2 scavenging sodium dithionite particles sinking through oxygenated water.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.