Na Zhao , Xiaomin Hu , Qiang Zhang , Yongsheng Sun , Peng Gao
{"title":"Effect of calcite on the thermal decomposition of pyrite: Thermodynamics, phase transformation, microstructure evolution and kinetics","authors":"Na Zhao , Xiaomin Hu , Qiang Zhang , Yongsheng Sun , Peng Gao","doi":"10.1016/j.cherd.2024.10.009","DOIUrl":null,"url":null,"abstract":"<div><div>Pyrite, a common iron mineral in refractory iron ores, emits SO<sub>2</sub> during oxidative roasting, contributing to environmental pollution. This study investigated the effect of calcite on the thermal decomposition of pyrite, focusing on thermodynamics, phase transformation, microstructural evolution, and non-isothermal kinetics, with emphasis on SO<sub>2</sub> formation inhibition. Results showed that pyrite decomposed first to pyrrhotite, then to magnetite and hematite, with SO<sub>2</sub> as the primary gaseous product. Higher temperatures and lower oxygen concentrations favored S<sub>2</sub> gas formation. Non-isothermal decomposition of pyrite occurred between 400–725°C, initiated at the particle surface, and significantly increased product porosity, resulting in butterfly-shaped hematite. The addition of calcite resulted in the reaction of SO<sub>2</sub> with calcite to form anhydrite on the particle surface, inhibiting the release of SO<sub>2</sub>. Initially, the thermal decomposition of pyrite proceeded with a low apparent activation energy, making the reaction relatively easy. However, the presence of calcite significantly increased the apparent activation energy and inhibited the thermal decomposition reaction.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"211 ","pages":"Pages 190-201"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026387622400594X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pyrite, a common iron mineral in refractory iron ores, emits SO2 during oxidative roasting, contributing to environmental pollution. This study investigated the effect of calcite on the thermal decomposition of pyrite, focusing on thermodynamics, phase transformation, microstructural evolution, and non-isothermal kinetics, with emphasis on SO2 formation inhibition. Results showed that pyrite decomposed first to pyrrhotite, then to magnetite and hematite, with SO2 as the primary gaseous product. Higher temperatures and lower oxygen concentrations favored S2 gas formation. Non-isothermal decomposition of pyrite occurred between 400–725°C, initiated at the particle surface, and significantly increased product porosity, resulting in butterfly-shaped hematite. The addition of calcite resulted in the reaction of SO2 with calcite to form anhydrite on the particle surface, inhibiting the release of SO2. Initially, the thermal decomposition of pyrite proceeded with a low apparent activation energy, making the reaction relatively easy. However, the presence of calcite significantly increased the apparent activation energy and inhibited the thermal decomposition reaction.
期刊介绍:
ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering.
Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.