FusionNGFPE: An image fusion approach driven by non-global fuzzy pre-enhancement framework

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Digital Signal Processing Pub Date : 2024-10-10 DOI:10.1016/j.dsp.2024.104801
Xiangbo Zhang , Gang Liu , Mingyi Li , Qin Ren , Haojie Tang , Durga Prasad Bavirisetti
{"title":"FusionNGFPE: An image fusion approach driven by non-global fuzzy pre-enhancement framework","authors":"Xiangbo Zhang ,&nbsp;Gang Liu ,&nbsp;Mingyi Li ,&nbsp;Qin Ren ,&nbsp;Haojie Tang ,&nbsp;Durga Prasad Bavirisetti","doi":"10.1016/j.dsp.2024.104801","DOIUrl":null,"url":null,"abstract":"<div><div>The majority of prevailing image fusion methods employ a global strategy, often resulting in a reduction of contrast. This study addresses this issue by proposing a novel image fusion approach called FusionNGFPE, specifically designed for the structural characteristics of infrared (IR) imagery. The approach introduces a contrast equalization algorithm based on the Fourth-order Partial Differential Equation (FPDE) to enhance background regions effectively. Considering the inherent differences between IR and visible (VIS) images, we developed a hybrid fusion strategy that combines the Expectation Maximization (EM) algorithm and Principal Component Analysis (PCA). Comparative analysis with state-of-the-art fusion methods shows that our proposed algorithm achieves superior performance in both qualitative and quantitative evaluations. To further demonstrate the practical significance of FusionNGFPE, we integrated this fusion framework into the RGBT target tracking task using the VOT-RGBT and OTCBVS datasets. Extensive comparative experiments confirm that the FusionNGFPE framework integrates seamlessly with the tracking task, significantly improving tracking accuracy across diverse scenarios.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104801"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424004263","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The majority of prevailing image fusion methods employ a global strategy, often resulting in a reduction of contrast. This study addresses this issue by proposing a novel image fusion approach called FusionNGFPE, specifically designed for the structural characteristics of infrared (IR) imagery. The approach introduces a contrast equalization algorithm based on the Fourth-order Partial Differential Equation (FPDE) to enhance background regions effectively. Considering the inherent differences between IR and visible (VIS) images, we developed a hybrid fusion strategy that combines the Expectation Maximization (EM) algorithm and Principal Component Analysis (PCA). Comparative analysis with state-of-the-art fusion methods shows that our proposed algorithm achieves superior performance in both qualitative and quantitative evaluations. To further demonstrate the practical significance of FusionNGFPE, we integrated this fusion framework into the RGBT target tracking task using the VOT-RGBT and OTCBVS datasets. Extensive comparative experiments confirm that the FusionNGFPE framework integrates seamlessly with the tracking task, significantly improving tracking accuracy across diverse scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FusionNGFPE:非全局模糊预增强框架驱动的图像融合方法
大多数流行的图像融合方法都采用全局策略,这往往会导致对比度降低。针对这一问题,本研究提出了一种名为 FusionNGFPE 的新型图像融合方法,专门针对红外图像的结构特征而设计。该方法引入了基于四阶偏微分方程(FPDE)的对比度均衡算法,以有效增强背景区域。考虑到红外图像与可见光(VIS)图像之间的固有差异,我们开发了一种混合融合策略,该策略结合了期望最大化(EM)算法和主成分分析(PCA)。与最先进的融合方法进行的比较分析表明,我们提出的算法在定性和定量评估中都取得了优异的性能。为了进一步证明 FusionNGFPE 的实际意义,我们使用 VOT-RGBT 和 OTCBVS 数据集将该融合框架集成到 RGBT 目标跟踪任务中。广泛的对比实验证实,FusionNGFPE 框架与跟踪任务无缝集成,显著提高了不同场景下的跟踪精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
期刊最新文献
Adaptive polarimetric persymmetric detection for distributed subspace targets in lognormal texture clutter MFFR-net: Multi-scale feature fusion and attentive recalibration network for deep neural speech enhancement PV-YOLO: A lightweight pedestrian and vehicle detection model based on improved YOLOv8 Efficient recurrent real video restoration IGGCN: Individual-guided graph convolution network for pedestrian trajectory prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1