{"title":"Cross-scale informative priors network for medical image segmentation","authors":"Fuxian Sui , Hua Wang , Fan Zhang","doi":"10.1016/j.dsp.2024.104883","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate segmentation of medical images is of great significance for computer-aided diagnosis. Transformers show great promise in medical image segmentation, where they can complement local convolutions by capturing long-range dependencies via self-attention. Recent methods have shown good performance in dealing with variations in global context modeling. However, they do not deal well with problems such as boundary blurring because they ignore the edge prior and the complementarity of the global context. To address this challenge, we propose a segmentation network based on informative priors across scales. The encoder in our network utilizes the self-attention mechanism to capture long-range dependencies, while the proposed cross-scale prior decoder makes full use of the multi-scale features in the hierarchical vision transformer to capture boundary information by using a prior perceptron, and enhances both remote and local context information by suppressing background information using a pattern perceptron. Through the internal organic combination, the edge prior and the global background are fully used to complement each other, and the problem of inaccurate boundary segmentation is better solved. Extensive experiments have been conducted on multiple segmented datasets to validate the advanced performance of the model.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"157 ","pages":"Article 104883"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424005074","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate segmentation of medical images is of great significance for computer-aided diagnosis. Transformers show great promise in medical image segmentation, where they can complement local convolutions by capturing long-range dependencies via self-attention. Recent methods have shown good performance in dealing with variations in global context modeling. However, they do not deal well with problems such as boundary blurring because they ignore the edge prior and the complementarity of the global context. To address this challenge, we propose a segmentation network based on informative priors across scales. The encoder in our network utilizes the self-attention mechanism to capture long-range dependencies, while the proposed cross-scale prior decoder makes full use of the multi-scale features in the hierarchical vision transformer to capture boundary information by using a prior perceptron, and enhances both remote and local context information by suppressing background information using a pattern perceptron. Through the internal organic combination, the edge prior and the global background are fully used to complement each other, and the problem of inaccurate boundary segmentation is better solved. Extensive experiments have been conducted on multiple segmented datasets to validate the advanced performance of the model.
期刊介绍:
Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal.
The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as:
• big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,