Fusion regression methods with repeated functional data

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-09-27 DOI:10.1016/j.csda.2024.108069
Issam-Ali Moindjié , Cristian Preda , Sophie Dabo-Niang
{"title":"Fusion regression methods with repeated functional data","authors":"Issam-Ali Moindjié ,&nbsp;Cristian Preda ,&nbsp;Sophie Dabo-Niang","doi":"10.1016/j.csda.2024.108069","DOIUrl":null,"url":null,"abstract":"<div><div>Linear regression and classification methods with repeated functional data are considered. For each statistical unit in the sample, a real-valued parameter is observed over time under different conditions related by some neighborhood structure (spatial, group, etc.). Two regression methods based on fusion penalties are proposed to consider the dependence induced by this structure. These methods aim to obtain parsimonious coefficient regression functions, by determining if close conditions are associated with common regression coefficient functions. The first method is a generalization to functional data of the variable fusion methodology based on the 1-nearest neighbor. The second one relies on the group fusion lasso penalty which assumes some grouping structure of conditions and allows for homogeneity among the regression coefficient functions within groups. Numerical simulations and an application of electroencephalography data are presented.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001531","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Linear regression and classification methods with repeated functional data are considered. For each statistical unit in the sample, a real-valued parameter is observed over time under different conditions related by some neighborhood structure (spatial, group, etc.). Two regression methods based on fusion penalties are proposed to consider the dependence induced by this structure. These methods aim to obtain parsimonious coefficient regression functions, by determining if close conditions are associated with common regression coefficient functions. The first method is a generalization to functional data of the variable fusion methodology based on the 1-nearest neighbor. The second one relies on the group fusion lasso penalty which assumes some grouping structure of conditions and allows for homogeneity among the regression coefficient functions within groups. Numerical simulations and an application of electroencephalography data are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重复功能数据的融合回归方法
考虑了重复功能数据的线性回归和分类方法。对于样本中的每个统计单元,在与某些邻域结构(空间、群体等)相关的不同条件下,会随时间观测到一个实值参数。为了考虑这种结构引起的依赖性,提出了两种基于融合惩罚的回归方法。这些方法旨在通过确定近似条件是否与共同的回归系数函数相关联,从而获得简洁的系数回归函数。第一种方法是将基于 1-nearest neighbor 的变量融合方法推广到函数数据中。第二种方法依赖于分组融合套索惩罚,它假定条件具有一定的分组结构,并允许组内回归系数函数之间具有同质性。本文介绍了数值模拟和脑电图数据的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1