Reliable Model Predictive Vibration Control for Structures with Nonprobabilistic Uncertainties

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Structural Control & Health Monitoring Pub Date : 2024-10-15 DOI:10.1155/2024/7596923
Jinglei Gong, Xiaojun Wang
{"title":"Reliable Model Predictive Vibration Control for Structures with Nonprobabilistic Uncertainties","authors":"Jinglei Gong,&nbsp;Xiaojun Wang","doi":"10.1155/2024/7596923","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This paper proposes a novel reliable model predictive control (MPC) method for active vibration control of structure with nonprobabilistic uncertainties. First, the framework of reliable MPC is established by integrating nonprobabilistic reliability constraints into nominal MPC. Based on the first-order Taylor expansion and first-passage theory, an efficient nonprobabilistic reliability analysis method that is suitable for online computation is proposed. A nonprobabilistic Kalman filter is further proposed for determine system states and their uncertain region. Unlike most robust MPC approaches, the proposed reliable MPC focuses on the satisfaction of state constraints in terms of structural reliability and is more suitable for structures with stringent safety requirements. Compared to existing reliability-based vibration control methods, reliable MPC requires no knowledge of disturbance and exhibits greater adaptability to load environments. The effectiveness and superiority of the proposed reliable MPC are validated through a numerical example and an engineering case study.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7596923","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7596923","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel reliable model predictive control (MPC) method for active vibration control of structure with nonprobabilistic uncertainties. First, the framework of reliable MPC is established by integrating nonprobabilistic reliability constraints into nominal MPC. Based on the first-order Taylor expansion and first-passage theory, an efficient nonprobabilistic reliability analysis method that is suitable for online computation is proposed. A nonprobabilistic Kalman filter is further proposed for determine system states and their uncertain region. Unlike most robust MPC approaches, the proposed reliable MPC focuses on the satisfaction of state constraints in terms of structural reliability and is more suitable for structures with stringent safety requirements. Compared to existing reliability-based vibration control methods, reliable MPC requires no knowledge of disturbance and exhibits greater adaptability to load environments. The effectiveness and superiority of the proposed reliable MPC are validated through a numerical example and an engineering case study.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对具有非概率不确定性的结构的可靠模型预测振动控制
本文提出了一种新的可靠模型预测控制(MPC)方法,用于具有非概率不确定性的结构主动振动控制。首先,通过将非概率可靠性约束纳入名义 MPC,建立了可靠 MPC 框架。基于一阶泰勒展开和第一通道理论,提出了适合在线计算的高效非概率可靠性分析方法。还进一步提出了一种非概率卡尔曼滤波器,用于确定系统状态及其不确定区域。与大多数稳健型 MPC 方法不同,所提出的可靠型 MPC 侧重于满足结构可靠性方面的状态约束,更适用于具有严格安全要求的结构。与现有的基于可靠性的振动控制方法相比,可靠 MPC 无需了解扰动情况,对载荷环境的适应性更强。通过数值示例和工程案例研究,验证了所提出的可靠 MPC 的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
期刊最新文献
Damage Identification in Large-Scale Bridge Girders Using Output-Only Modal Flexibility–Based Deflections and Span-Similar Virtual Beam Models A Multiple-Point Deformation Monitoring Model for Ultrahigh Arch Dams Using Temperature Lag and Optimized Gaussian Process Regression A Graph-Based Methodology for Optimal Design of Inerter-Based Passive Vibration Absorbers With Minimum Complexity Automatic Identification and Segmentation of Long-Span Rail-and-Road Cable-Stayed Bridges Using UAV LiDAR Point Cloud Development of 6 Degrees of Freedom Parallel-Link Shaking Table for Three-Dimensional Movement on Centrifugal Loading Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1