Large enhancement of properties in strained lead-free multiferroic solid solutions with strong deviation from Vegard’s law

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-10-15 DOI:10.1016/j.matt.2024.09.018
Tao Wang, Min-Jie Zou, Dehe Zhang, Yu-Chieh Ku, Yawen Zheng, Shen Pan, Zhongqi Ren, Zedong Xu, Haoliang Huang, Wei Luo, Yunlong Tang, Lang Chen, Cheng-En Liu, Chun-Fu Chang, Sujit Das, Laurent Bellaiche, Yurong Yang, Xiu-Liang Ma, Chang-Yang Kuo, Xingjun Liu, Zuhuang Chen
{"title":"Large enhancement of properties in strained lead-free multiferroic solid solutions with strong deviation from Vegard’s law","authors":"Tao Wang, Min-Jie Zou, Dehe Zhang, Yu-Chieh Ku, Yawen Zheng, Shen Pan, Zhongqi Ren, Zedong Xu, Haoliang Huang, Wei Luo, Yunlong Tang, Lang Chen, Cheng-En Liu, Chun-Fu Chang, Sujit Das, Laurent Bellaiche, Yurong Yang, Xiu-Liang Ma, Chang-Yang Kuo, Xingjun Liu, Zuhuang Chen","doi":"10.1016/j.matt.2024.09.018","DOIUrl":null,"url":null,"abstract":"Efforts to combine the advantages of multiple systems to enhance functionalities through solid-solution design present a great challenge due to the constraint imposed by the classical Vegard’s law. Here, we successfully navigate this trade-off by leveraging the synergistic effect of chemical doping and strain engineering in the solid-solution system of (1-<em>x</em>)BiFeO<sub>3</sub>-<em>x</em>BaTiO<sub>3</sub>. Unlike bulks, a significant deviation from Vegard’s law accompanied by enhanced multiferroism is observed in strained solid-solution epitaxial films, where we achieve a pronounced tetragonality (∼1.1), enhanced saturated magnetization (∼12 emu/cm<sup>3</sup>), substantial polarization (∼107 μC/cm<sup>2</sup>), and high ferroelectric Curie temperature (∼880°C), all while maintaining impressively low leakage current. These characteristics surpass the properties of their parent BiFeO<sub>3</sub> and BaTiO<sub>3</sub> films. Moreover, the superior ferroelectricity has never been reported in corresponding bulks (e.g., <em>P</em> ∼5 μC/cm<sup>2</sup> and <em>T</em><sub>C</sub> ∼300°C for bulk, with <em>x</em> = 0.5). These findings underscore the potential of strained (1-<em>x</em>)BiFeO<sub>3</sub>-<em>x</em>BaTiO<sub>3</sub> films as lead-free, room temperature multiferroics.","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.09.018","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efforts to combine the advantages of multiple systems to enhance functionalities through solid-solution design present a great challenge due to the constraint imposed by the classical Vegard’s law. Here, we successfully navigate this trade-off by leveraging the synergistic effect of chemical doping and strain engineering in the solid-solution system of (1-x)BiFeO3-xBaTiO3. Unlike bulks, a significant deviation from Vegard’s law accompanied by enhanced multiferroism is observed in strained solid-solution epitaxial films, where we achieve a pronounced tetragonality (∼1.1), enhanced saturated magnetization (∼12 emu/cm3), substantial polarization (∼107 μC/cm2), and high ferroelectric Curie temperature (∼880°C), all while maintaining impressively low leakage current. These characteristics surpass the properties of their parent BiFeO3 and BaTiO3 films. Moreover, the superior ferroelectricity has never been reported in corresponding bulks (e.g., P ∼5 μC/cm2 and TC ∼300°C for bulk, with x = 0.5). These findings underscore the potential of strained (1-x)BiFeO3-xBaTiO3 films as lead-free, room temperature multiferroics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应变无铅多铁氧体固溶体特性的大幅提升与维加定律的强烈偏差
由于经典维加定律的限制,通过固溶体设计结合多种体系的优势来增强功能的努力面临着巨大的挑战。在这里,我们利用 (1-x)BiFeO3-xBaTiO3 固溶体体系中化学掺杂和应变工程的协同效应,成功地解决了这一权衡问题。与块体不同的是,在应变固溶体外延薄膜中观察到明显偏离维加定律的现象,并伴随着增强的多铁性,我们在其中实现了明显的四方性(∼1.1)、增强的饱和磁化(∼12 emu/cm3)、显著的极化(∼107 μC/cm2)和较高的铁电居里温度(∼880°C),同时保持了令人印象深刻的低漏电流。这些特性超越了其母体 BiFeO3 和 BaTiO3 薄膜的特性。此外,卓越的铁电性从未在相应的块体中报道过(例如,块体的 P ∼5 μC/cm2 和 TC ∼300°C,x = 0.5)。这些发现强调了应变 (1-x)BiFeO3-xBaTiO3 薄膜作为无铅室温多铁性材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Drug origami: A computation-guided approach for customizable drug release kinetics of oral formulations Metal-lattice-heredity synthesis of single-crystalline 2D transition metal oxides A structural underpinning of the lower critical solution temperature (LCST) behavior behind temperature-switchable liquids Photo-electrochemical synergistically induced ion detrapping for electrochromic device rejuvenation Large enhancement of properties in strained lead-free multiferroic solid solutions with strong deviation from Vegard’s law
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1