Generative Design and Experimental Validation of Non-Fullerene Acceptors for Photovoltaics

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-10-03 DOI:10.1021/acsenergylett.4c0208610.1021/acsenergylett.4c02086
Jin Da Tan, Balamurugan Ramalingam*, Vijila Chellappan, Nipun Kumar Gupta, Laurent Dillard, Saif A. Khan, Casey Galvin and Kedar Hippalgaonkar*, 
{"title":"Generative Design and Experimental Validation of Non-Fullerene Acceptors for Photovoltaics","authors":"Jin Da Tan,&nbsp;Balamurugan Ramalingam*,&nbsp;Vijila Chellappan,&nbsp;Nipun Kumar Gupta,&nbsp;Laurent Dillard,&nbsp;Saif A. Khan,&nbsp;Casey Galvin and Kedar Hippalgaonkar*,&nbsp;","doi":"10.1021/acsenergylett.4c0208610.1021/acsenergylett.4c02086","DOIUrl":null,"url":null,"abstract":"<p >The utilization of non-fullerene acceptors (NFA) in organic photovoltaic (OPV) devices offers advantages over fullerene-based acceptors, including lower costs and improved light absorption. Despite advances in small molecule generative design, experimental validation frameworks are often lacking. This study introduces a comprehensive pipeline for generating, virtual screening, and synthesizing potential NFAs for high-efficiency OPVs, integrating generative and predictive ML models with expert knowledge. Iterative refinement ensured the synthetic feasibility of the generated molecules, using the diketopyrrolopyrrole (DPP) core motif to manually generate NFA candidates meeting stringent synthetic criteria. These candidates were virtually screened using a predictive ML model based on power conversion efficiency (PCE) calculations from the modified Scharber model (PCE<sub>MS</sub>). We successfully synthesized seven NFA candidates, each requiring three or fewer steps. Experimental HOMO and LUMO measurements yielded calculated PCE<sub>MS</sub> values from 6.7% to 11.8%. This study demonstrates an effective pipeline for discovering OPV NFA candidates by integrating generative and predictive ML models.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 10","pages":"5240–5250 5240–5250"},"PeriodicalIF":19.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c02086","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of non-fullerene acceptors (NFA) in organic photovoltaic (OPV) devices offers advantages over fullerene-based acceptors, including lower costs and improved light absorption. Despite advances in small molecule generative design, experimental validation frameworks are often lacking. This study introduces a comprehensive pipeline for generating, virtual screening, and synthesizing potential NFAs for high-efficiency OPVs, integrating generative and predictive ML models with expert knowledge. Iterative refinement ensured the synthetic feasibility of the generated molecules, using the diketopyrrolopyrrole (DPP) core motif to manually generate NFA candidates meeting stringent synthetic criteria. These candidates were virtually screened using a predictive ML model based on power conversion efficiency (PCE) calculations from the modified Scharber model (PCEMS). We successfully synthesized seven NFA candidates, each requiring three or fewer steps. Experimental HOMO and LUMO measurements yielded calculated PCEMS values from 6.7% to 11.8%. This study demonstrates an effective pipeline for discovering OPV NFA candidates by integrating generative and predictive ML models.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光伏用非富勒烯受体的生成设计和实验验证
与基于富勒烯的受体相比,在有机光伏(OPV)设备中使用非富勒烯受体(NFA)具有成本低、光吸收效果好等优点。尽管小分子生成设计取得了进展,但往往缺乏实验验证框架。本研究介绍了一种用于生成、虚拟筛选和合成潜在 NFAs 的综合方法,该方法将生成性和预测性 ML 模型与专家知识相结合,可用于高效 OPV。使用二酮吡咯并吡咯(DPP)核心基团手动生成符合严格合成标准的候选 NFA,迭代改进确保了生成分子的合成可行性。这些候选分子利用基于改良夏伯模型(PCEMS)功率转换效率(PCE)计算的预测性 ML 模型进行了虚拟筛选。我们成功合成了七种 NFA 候选化合物,每种化合物只需三个或更少的步骤。实验性 HOMO 和 LUMO 测量得出的 PCEMS 计算值从 6.7% 到 11.8%。这项研究展示了通过整合生成性和预测性 ML 模型来发现 OPV NFA 候选物的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Unraveling the Ion-Accumulation-Induced Potential Limitations of MXene-Based Supercapacitors Biomimetic Inorganic–Organic Protective Layer for Highly Stable and Reversible Zn Anodes Spiro-OMeTAD: Unique Redox Chemistry Driving The Hole Transport In Operando Visualization of Polymerized Ionic Liquid Electrolyte Migration in Solid-State Lithium Batteries Long-Cycling Lithium–Sulfur Batteries Enabled by Reactivating Inactive Lithium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1