Sirigala Lavanya , Kasirajan Hema Shree MDS , Prathiba Ramani
{"title":"Fluoride effect on renal and hepatic functions: A comprehensive decade review of In vitro and In vivo studies","authors":"Sirigala Lavanya , Kasirajan Hema Shree MDS , Prathiba Ramani","doi":"10.1016/j.jobcr.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>This systematic review evaluates the toxicological effects of exposure to fluoride on renal and hepatic functioning. It compiles both in vitro & in vivo studies across the last decade. By highlighting the potential health risks, the review aims to raise awareness and encourage a more attentive approach to fluoride use and exposure, instilling a sense of concern and vigilance in the audience.</div></div><div><h3>Methodology</h3><div>A thorough literature search covered relevant studies from 2013 to 2023, both experimental (in vitro) and animal (in vivo) research. The data extraction process focused on critical aspects such as sample size, methodologies used, key findings, and conclusions regarding fluoride's impact on kidney and liver functions. The review also includes a detailed analysis of gene expression, KEGG pathways, and STRING analysis, further enhancing the reliability of the results.</div></div><div><h3>Results</h3><div>Significant renal and liver damage were demonstrated in animal models exposed to high fluoride doses for long duration. Ferulic acid was found to mitigate fluoride-induced oxidative damage. The combined mean difference across studies was 6.52 [-5.22, 18.26], indicating high heterogeneity, which reflects diverse methodologies and findings. Notably, epigenetic and immune system impacts were underscored, with gene analysis identifying several genes involved in oxidative stress response, apoptosis, and inflammation pathways.</div></div><div><h3>Conclusion</h3><div>The findings emphasize the substantial evidence of its harmful effects on renal and liver functions at high exposure levels. Some studies indicate minimal impact, others demonstrate significant organ damage. The results underline the necessity for continued research to establish safe fluoride exposure limits and comprehend the mechanisms underlying its toxicity.</div></div>","PeriodicalId":16609,"journal":{"name":"Journal of oral biology and craniofacial research","volume":"14 6","pages":"Pages 735-745"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of oral biology and craniofacial research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212426824001490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background
This systematic review evaluates the toxicological effects of exposure to fluoride on renal and hepatic functioning. It compiles both in vitro & in vivo studies across the last decade. By highlighting the potential health risks, the review aims to raise awareness and encourage a more attentive approach to fluoride use and exposure, instilling a sense of concern and vigilance in the audience.
Methodology
A thorough literature search covered relevant studies from 2013 to 2023, both experimental (in vitro) and animal (in vivo) research. The data extraction process focused on critical aspects such as sample size, methodologies used, key findings, and conclusions regarding fluoride's impact on kidney and liver functions. The review also includes a detailed analysis of gene expression, KEGG pathways, and STRING analysis, further enhancing the reliability of the results.
Results
Significant renal and liver damage were demonstrated in animal models exposed to high fluoride doses for long duration. Ferulic acid was found to mitigate fluoride-induced oxidative damage. The combined mean difference across studies was 6.52 [-5.22, 18.26], indicating high heterogeneity, which reflects diverse methodologies and findings. Notably, epigenetic and immune system impacts were underscored, with gene analysis identifying several genes involved in oxidative stress response, apoptosis, and inflammation pathways.
Conclusion
The findings emphasize the substantial evidence of its harmful effects on renal and liver functions at high exposure levels. Some studies indicate minimal impact, others demonstrate significant organ damage. The results underline the necessity for continued research to establish safe fluoride exposure limits and comprehend the mechanisms underlying its toxicity.
期刊介绍:
Journal of Oral Biology and Craniofacial Research (JOBCR)is the official journal of the Craniofacial Research Foundation (CRF). The journal aims to provide a common platform for both clinical and translational research and to promote interdisciplinary sciences in craniofacial region. JOBCR publishes content that includes diseases, injuries and defects in the head, neck, face, jaws and the hard and soft tissues of the mouth and jaws and face region; diagnosis and medical management of diseases specific to the orofacial tissues and of oral manifestations of systemic diseases; studies on identifying populations at risk of oral disease or in need of specific care, and comparing regional, environmental, social, and access similarities and differences in dental care between populations; diseases of the mouth and related structures like salivary glands, temporomandibular joints, facial muscles and perioral skin; biomedical engineering, tissue engineering and stem cells. The journal publishes reviews, commentaries, peer-reviewed original research articles, short communication, and case reports.