Zhaoyang Zhang, Qingwang Wang, Yinxing Zhang, Tao Shen
{"title":"Physical information-guided multidirectional gated recurrent unit network fusing attention to solve the Black-Scholes equation","authors":"Zhaoyang Zhang, Qingwang Wang, Yinxing Zhang, Tao Shen","doi":"10.1016/j.dsp.2024.104766","DOIUrl":null,"url":null,"abstract":"<div><div>Reasonable option pricing is crucial in the financial derivatives market. Finding analytical solutions for the Black-Scholes (BS) equation, particularly for American options or with fluctuating volatility and interest rates, is challenging. BS equations exhibit strong time-series characteristics, with asset prices typically adhering to geometric Brownian motion. To address the BS equations, we propose a sequence-to-sequence model guided by physical information (PI), called PiMGA. The PiMGA fuses a multidirectional gated recurrent unit (GRU) network with an attention module, where multidirectional GRU enhances the coding performance of the input sequences and the attention module balances the feature weights of the hidden variables. Prior physical knowledge in BS equations is jointly used as a constraint, forming the penalty function for objective optimization. This allows PiMGA to serve as an efficient approximation function in the learning paradigm of physically informed machine learning to solve BS equations. BS equations with various complexities illustrate the accuracy and feasibility of PiMGA for numerical solutions. Furthermore, the out-of-distribution generalization ability of PiMGA is verified by predicting the Nasdaq 100 index.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104766"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424003919","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Reasonable option pricing is crucial in the financial derivatives market. Finding analytical solutions for the Black-Scholes (BS) equation, particularly for American options or with fluctuating volatility and interest rates, is challenging. BS equations exhibit strong time-series characteristics, with asset prices typically adhering to geometric Brownian motion. To address the BS equations, we propose a sequence-to-sequence model guided by physical information (PI), called PiMGA. The PiMGA fuses a multidirectional gated recurrent unit (GRU) network with an attention module, where multidirectional GRU enhances the coding performance of the input sequences and the attention module balances the feature weights of the hidden variables. Prior physical knowledge in BS equations is jointly used as a constraint, forming the penalty function for objective optimization. This allows PiMGA to serve as an efficient approximation function in the learning paradigm of physically informed machine learning to solve BS equations. BS equations with various complexities illustrate the accuracy and feasibility of PiMGA for numerical solutions. Furthermore, the out-of-distribution generalization ability of PiMGA is verified by predicting the Nasdaq 100 index.
期刊介绍:
Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal.
The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as:
• big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,