Discharging Performance Analysis of MXene Nano-Enhanced Phase Change Material for Double and Triplex Tube Thermal Energy Storage

Energy Storage Pub Date : 2024-10-15 DOI:10.1002/est2.70055
Utkarsh Srivastava, Rashmi Rekha Sahoo
{"title":"Discharging Performance Analysis of MXene Nano-Enhanced Phase Change Material for Double and Triplex Tube Thermal Energy Storage","authors":"Utkarsh Srivastava,&nbsp;Rashmi Rekha Sahoo","doi":"10.1002/est2.70055","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The present study numerically investigates the energy and exergy analysis of solidification of phase change materials within a double tube and triple tube latent heat storage unit using ANSYS Fluent. Double tube and triple tube thermal energy storage system's thermal characteristics are examined using MXene nano-enhanced phase change material to determine system efficiency, discharged energy, heat transfer rate, exergy destruction, entropy generation number, exergetic efficiency, liquid fraction, solidification temperature contours. The result revealed that the double tube thermal energy storage with pure cetyl alcohol PCM has 14.76% lower discharge exergy than MXene-based nano-enhanced phase change material in pure solidification. In a triple tube thermal energy storage system, the solidification time for MXene-based nano-enhanced phase change material is impressively reduced by 54.76% compared to a double tube system using pure phase change material. At a Fourier number of 0.00672, MXene nano-enhanced phase change material exhibits an 11.69% higher Stefan number (St) than cetyl alcohol phase change material in a double tube thermal energy storage system. At 2400 s, pure phase change material and MXene nano-enhanced phase change material generated 3.14% and 4.88% less entropy than pure cetyl alcohol in the triple tube thermal energy storage system. During the pure solidification process in a double tube thermal energy storage system, pure cetyl alcohol experiences 7.60% higher exergy destruction compared to MXene nano-enhanced phase change material at a solidification time of 2400 s. In a triple tube thermal energy storage system, the discharging temperature for pure cetyl alcohol phase change material is 2.92% lower than that in a double tube system. Double tube thermal energy storage with pure cetyl alcohol discharged more efficiently over 2400 s. The triple tube thermal energy storage system solidified cetyl alcohol PCM 20.83% faster than pure phase change material due to MXene nanoparticles' better thermophysical properties. Thus, MXene-based nano-enhanced cetyl alcohol phase change material solidifies faster per volume in a triple tube thermal energy storage latent heat system.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present study numerically investigates the energy and exergy analysis of solidification of phase change materials within a double tube and triple tube latent heat storage unit using ANSYS Fluent. Double tube and triple tube thermal energy storage system's thermal characteristics are examined using MXene nano-enhanced phase change material to determine system efficiency, discharged energy, heat transfer rate, exergy destruction, entropy generation number, exergetic efficiency, liquid fraction, solidification temperature contours. The result revealed that the double tube thermal energy storage with pure cetyl alcohol PCM has 14.76% lower discharge exergy than MXene-based nano-enhanced phase change material in pure solidification. In a triple tube thermal energy storage system, the solidification time for MXene-based nano-enhanced phase change material is impressively reduced by 54.76% compared to a double tube system using pure phase change material. At a Fourier number of 0.00672, MXene nano-enhanced phase change material exhibits an 11.69% higher Stefan number (St) than cetyl alcohol phase change material in a double tube thermal energy storage system. At 2400 s, pure phase change material and MXene nano-enhanced phase change material generated 3.14% and 4.88% less entropy than pure cetyl alcohol in the triple tube thermal energy storage system. During the pure solidification process in a double tube thermal energy storage system, pure cetyl alcohol experiences 7.60% higher exergy destruction compared to MXene nano-enhanced phase change material at a solidification time of 2400 s. In a triple tube thermal energy storage system, the discharging temperature for pure cetyl alcohol phase change material is 2.92% lower than that in a double tube system. Double tube thermal energy storage with pure cetyl alcohol discharged more efficiently over 2400 s. The triple tube thermal energy storage system solidified cetyl alcohol PCM 20.83% faster than pure phase change material due to MXene nanoparticles' better thermophysical properties. Thus, MXene-based nano-enhanced cetyl alcohol phase change material solidifies faster per volume in a triple tube thermal energy storage latent heat system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于双管和三联管热能存储的 MXene 纳米增强相变材料的放电性能分析
本研究使用 ANSYS Fluent 对双管和三管潜热储能装置内相变材料固化的能量和放能分析进行了数值研究。使用 MXene 纳米增强相变材料对双管和三管潜热储能系统的热特性进行了研究,以确定系统效率、排出能量、传热速率、放能破坏、熵生成数、放能效率、液体分数、凝固温度等值线。结果表明,采用纯十六醇 PCM 的双管热储能在纯凝固状态下比基于 MXene 的纳米增强相变材料的排出能耗低 14.76%。在三管热储能系统中,与使用纯相变材料的双管系统相比,MXene 基纳米增强相变材料的凝固时间缩短了 54.76%,令人印象深刻。当傅里叶数为 0.00672 时,MXene 纳米增强相变材料的斯特凡数(St)比双管热能储存系统中的鲸蜡醇相变材料高 11.69%。2400 秒时,纯相变材料和 MXene 纳米增强相变材料在三管热储能系统中产生的熵分别比纯十六醇少 3.14% 和 4.88%。在双管热能储存系统的纯凝固过程中,与 MXene 纳米增强相变材料相比,在 2400 秒的凝固时间内,纯十六醇的放热破坏率高 7.60%。在三管热储能系统中,纯十六醇相变材料的放电温度比双管系统低 2.92%。使用纯十六醇的双管蓄热系统在 2400 秒内的放电效率更高。由于 MXene 纳米粒子具有更好的热物理性能,三管热储能系统固化鲸蜡醇 PCM 的速度比纯相变材料快 20.83%。因此,基于 MXene 纳米增强型十六醇相变材料在三联管热能储存潜热系统中的单位体积凝固速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
A System to Store Waste Heat as Liquid Hydrogen Assisted by Organic Rankine Cycle, Proton Exchange Membrane Electrolyzer, and Mixed Refrigerant Hydrogen Liquefaction Cycle Sustainable Hydrogen Storage and Methanol Synthesis Through Solar-Powered Co-Electrolysis Using SOEC Strategic Patent Portfolio Management in the Sodium-Ion Battery Industry: Navigating Innovation and Competition Optimizing Wind and Solar Integration in a Hybrid Energy System for Enhanced Sustainability Exploration of Hydrogen Storage Exhibited by Rh-Decorated Pristine and Defective Graphenes: A First-Principles Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1