Enhanced Thermoelectric Performance of La1.98Sr0.02Cu0.94Co0.06O4 by Multiwalled Carbon Nanotubes Addition

Energy Storage Pub Date : 2024-12-03 DOI:10.1002/est2.70098
Mohd Saif, D. Tripathi
{"title":"Enhanced Thermoelectric Performance of La1.98Sr0.02Cu0.94Co0.06O4 by Multiwalled Carbon Nanotubes Addition","authors":"Mohd Saif,&nbsp;D. Tripathi","doi":"10.1002/est2.70098","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Effect of multiwalled carbon nanotubes (MWCNTs) addition on thermoelectric properties of polycrystalline LSCCO (La<sub>1.98</sub>Sr<sub>0.02</sub>Cu<sub>0.94</sub>Co<sub>0.06</sub>O<sub>4</sub>) has been examined. The samples have been synthesized via the solid-state reaction technique. Micro-structural and surface morphology of the synthesized pellets have been investigated using X-ray diffraction and Field Emission Scanning Electron Microscopy, respectively. The electrical resistivity and Seebeck coefficient of investigated pellets have been measured using a custom-built apparatus between 300 and 450 K. Nevertheless, the transient heat transfer technique has been adopted for thermal conductivity measurement. The addition of MWCNTs significantly enhances the electrical conductivity and reduces the thermal conductivity of LSCCO. This results in a remarkable improvement in the figure of merit in spite of the reduction in Seebeck coefficient with MWCNTs addition. The maximum ZT value ~0.07 is achieved at 323 K for 0.05 wt% MWCNTs-loaded LSCCO, which is ~28 times that of pristine LSCCO. The enhanced thermoelectric performance is attributed to the increased carrier concentration, reduced grain size, and improved interface phonon scattering due to MWCNTs addition. Our results demonstrate the potential of MWCNTs as an effective additive to enhance the thermoelectric properties of LSCCO-based materials.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Effect of multiwalled carbon nanotubes (MWCNTs) addition on thermoelectric properties of polycrystalline LSCCO (La1.98Sr0.02Cu0.94Co0.06O4) has been examined. The samples have been synthesized via the solid-state reaction technique. Micro-structural and surface morphology of the synthesized pellets have been investigated using X-ray diffraction and Field Emission Scanning Electron Microscopy, respectively. The electrical resistivity and Seebeck coefficient of investigated pellets have been measured using a custom-built apparatus between 300 and 450 K. Nevertheless, the transient heat transfer technique has been adopted for thermal conductivity measurement. The addition of MWCNTs significantly enhances the electrical conductivity and reduces the thermal conductivity of LSCCO. This results in a remarkable improvement in the figure of merit in spite of the reduction in Seebeck coefficient with MWCNTs addition. The maximum ZT value ~0.07 is achieved at 323 K for 0.05 wt% MWCNTs-loaded LSCCO, which is ~28 times that of pristine LSCCO. The enhanced thermoelectric performance is attributed to the increased carrier concentration, reduced grain size, and improved interface phonon scattering due to MWCNTs addition. Our results demonstrate the potential of MWCNTs as an effective additive to enhance the thermoelectric properties of LSCCO-based materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多壁碳纳米管对la1.98 sr0.02 cu0.94 co0.060 o4热电性能的增强
研究了添加多壁碳纳米管(MWCNTs)对多晶LSCCO (la1.98 sr0.02 cu0.94 co0.060 o4)热电性能的影响。通过固相反应技术合成了样品。利用x射线衍射和场发射扫描电镜对合成的微球的微观结构和表面形貌进行了研究。在300 ~ 450 K范围内,用特制的仪器测量了所研究球团的电阻率和塞贝克系数。然而,热导率的测量采用了瞬态传热技术。MWCNTs的加入显著提高了LSCCO的导电性,降低了其导热系数。尽管添加MWCNTs降低了塞贝克系数,但这一结果显著改善了质量系数。负载0.05 wt% mwcnts的LSCCO在323 K时ZT最大值达到0.07,是原始LSCCO的28倍。热电性能的增强是由于添加MWCNTs增加了载流子浓度,减小了晶粒尺寸,改善了界面声子散射。我们的研究结果证明了MWCNTs作为一种有效添加剂的潜力,可以增强lscco基材料的热电性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Early Prediction of the Remaining Useful Life of Lithium-Ion Cells Using Ensemble and Non-Ensemble Algorithms Multi-Objective Optimization of a Spherical Thermal Storage Tank Using a Student Psychology-Based Approach Thermodynamic Parameters (Enthalpy and Entropy) of Hydrogen Storage in Ultrasound-Assisted Synthesized Selenium Decorated Fullerene Effect of Thickness on Performance of Thermal Management System for a Prismatic Lithium-Ion Battery Using Phase Change Material Microgrid Management of Hybrid Energy Sources Using a Hybrid Optimization Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1