{"title":"Contrastive adaptation effects along a voice-nonvoice continuum.","authors":"Zi Gao,Andrew J Oxenham","doi":"10.1037/xge0001672","DOIUrl":null,"url":null,"abstract":"Adaptation to the environment is a universal property of perception across all sensory modalities. It can enhance the salience of new events in an ongoing background and helps maintain perceptual constancy in the face of variable sensory input. Several contrastive adaptation effects have been identified using sounds within the categories of human voice and musical instruments. The present study investigated whether such contrast effects can occur between voice and nonvoice stimulus categories. A 10-step continuum between \"voice\" (/a/, /o/, or /u/ vowels) and \"instrument\" (bassoon, horn, or viola) sounds was generated for each of the nine possible pairs. In each trial, an adaptor, either a voice or instrument, was played four times and was followed by a target from along the appropriate continuum. When trials with voice and instrumental adaptors were grouped into separate blocks, strong contrastive adaptation effects were observed, with the target more likely to be identified as a voice following instrumental adaptors and vice versa (Experiment 1). The effects were not observed for visual image adaptors (Experiment 2). The effects were somewhat larger when the adaptors and the target were presented to the same than to different ears, but significant adaptation was observed in both conditions, suggesting contributions of central mechanisms, following binaural integration (Experiment 3). The effect accumulated when the same type of adaptor was presented consecutively and persisted following the end of the adaptors (Experiment 4). The discovery of voice-nonvoice contrastive pairs opens the possibility of studying perceptual or neuronal voice selectivity while keeping acoustic features constant. (PsycInfo Database Record (c) 2024 APA, all rights reserved).","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/xge0001672","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Adaptation to the environment is a universal property of perception across all sensory modalities. It can enhance the salience of new events in an ongoing background and helps maintain perceptual constancy in the face of variable sensory input. Several contrastive adaptation effects have been identified using sounds within the categories of human voice and musical instruments. The present study investigated whether such contrast effects can occur between voice and nonvoice stimulus categories. A 10-step continuum between "voice" (/a/, /o/, or /u/ vowels) and "instrument" (bassoon, horn, or viola) sounds was generated for each of the nine possible pairs. In each trial, an adaptor, either a voice or instrument, was played four times and was followed by a target from along the appropriate continuum. When trials with voice and instrumental adaptors were grouped into separate blocks, strong contrastive adaptation effects were observed, with the target more likely to be identified as a voice following instrumental adaptors and vice versa (Experiment 1). The effects were not observed for visual image adaptors (Experiment 2). The effects were somewhat larger when the adaptors and the target were presented to the same than to different ears, but significant adaptation was observed in both conditions, suggesting contributions of central mechanisms, following binaural integration (Experiment 3). The effect accumulated when the same type of adaptor was presented consecutively and persisted following the end of the adaptors (Experiment 4). The discovery of voice-nonvoice contrastive pairs opens the possibility of studying perceptual or neuronal voice selectivity while keeping acoustic features constant. (PsycInfo Database Record (c) 2024 APA, all rights reserved).