Explicitly-Decoupled Text Transfer With Minimized Background Reconstruction for Scene Text Editing

Jianqun Zhou;Pengwen Dai;Yang Li;Manjiang Hu;Xiaochun Cao
{"title":"Explicitly-Decoupled Text Transfer With Minimized Background Reconstruction for Scene Text Editing","authors":"Jianqun Zhou;Pengwen Dai;Yang Li;Manjiang Hu;Xiaochun Cao","doi":"10.1109/TIP.2024.3477355","DOIUrl":null,"url":null,"abstract":"Scene text editing aims to replace the source text with the target text while preserving the original background. Its practical applications span various domains, such as data generation and privacy protection, highlighting its increasing importance in recent years. In this study, we propose a novel Scene Text Editing network with Explicitly-decoupled text transfer and Minimized background reconstruction, called STEEM. Unlike existing methods that usually fuse text style, text content, and background, our approach focuses on decoupling text style and content from the background and utilizes the minimized background reconstruction to reduce the impact of text replacement on the background. Specifically, the text-background separation module predicts the text mask of the scene text image, separating the source text from the background. Subsequently, the style-guided text transfer decoding module transfers the geometric and stylistic attributes of the source text to the content text, resulting in the target text. Next, the background and target text are combined to determine the minimal reconstruction area. Finally, the context-focused background reconstruction module is applied to the reconstruction area, producing the editing result. Furthermore, to ensure stable joint optimization of the four modules, a task-adaptive training optimization strategy has been devised. Experimental evaluations conducted on two popular datasets demonstrate the effectiveness of our approach. STEEM outperforms state-of-the-art methods, as evidenced by a reduction in the FID index from 29.48 to 24.67 and an increase in text recognition accuracy from 76.8% to 78.8%.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"5921-5935"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10719657/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scene text editing aims to replace the source text with the target text while preserving the original background. Its practical applications span various domains, such as data generation and privacy protection, highlighting its increasing importance in recent years. In this study, we propose a novel Scene Text Editing network with Explicitly-decoupled text transfer and Minimized background reconstruction, called STEEM. Unlike existing methods that usually fuse text style, text content, and background, our approach focuses on decoupling text style and content from the background and utilizes the minimized background reconstruction to reduce the impact of text replacement on the background. Specifically, the text-background separation module predicts the text mask of the scene text image, separating the source text from the background. Subsequently, the style-guided text transfer decoding module transfers the geometric and stylistic attributes of the source text to the content text, resulting in the target text. Next, the background and target text are combined to determine the minimal reconstruction area. Finally, the context-focused background reconstruction module is applied to the reconstruction area, producing the editing result. Furthermore, to ensure stable joint optimization of the four modules, a task-adaptive training optimization strategy has been devised. Experimental evaluations conducted on two popular datasets demonstrate the effectiveness of our approach. STEEM outperforms state-of-the-art methods, as evidenced by a reduction in the FID index from 29.48 to 24.67 and an increase in text recognition accuracy from 76.8% to 78.8%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于场景文本编辑的显式解耦文本传输与最小化背景重构
场景文本编辑旨在用目标文本替换源文本,同时保留原始背景。其实际应用横跨数据生成和隐私保护等多个领域,凸显了其近年来日益增长的重要性。在本研究中,我们提出了一种新颖的场景文本编辑网络,称为 STEEM,它具有显式解耦文本传输和最小化背景重建功能。与通常将文本风格、文本内容和背景融合在一起的现有方法不同,我们的方法侧重于将文本风格和内容与背景解耦,并利用最小化背景重构来减少文本替换对背景的影响。具体来说,文本-背景分离模块预测场景文本图像的文本掩码,将源文本从背景中分离出来。随后,风格引导文本转移解码模块将源文本的几何和风格属性转移到内容文本中,形成目标文本。接着,将背景和目标文本结合起来,以确定最小的重建区域。最后,以上下文为重点的背景重构模块被应用到重构区域,产生编辑结果。此外,为了确保四个模块稳定地联合优化,还设计了一种任务自适应训练优化策略。在两个流行数据集上进行的实验评估证明了我们方法的有效性。STEEM 的 FID 指数从 29.48 降至 24.67,文本识别准确率从 76.8% 提高到 78.8%,这证明它优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Cross-Attention Point Transformer With Global Porous Sampling Salient Object Detection From Arbitrary Modalities GSSF: Generalized Structural Sparse Function for Deep Cross-Modal Metric Learning AnlightenDiff: Anchoring Diffusion Probabilistic Model on Low Light Image Enhancement Exploring Multi-Modal Contextual Knowledge for Open-Vocabulary Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1