Three-Step Thermodynamic vs. Two-Step Kinetics-Limited Sulfur Reactions in All-Solid-State Sodium Batteries

IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Reviews Pub Date : 2024-10-16 DOI:10.1039/d4ee03160a
Tongtai Ji, Qingsong Tu, Yang Zhao, Dominik Wierzbicki, Vincent Plisson, Ying Wang, Jiwei Wang, Kenneth Burch, Yong Yang, Hongli Zhu
{"title":"Three-Step Thermodynamic vs. Two-Step Kinetics-Limited Sulfur Reactions in All-Solid-State Sodium Batteries","authors":"Tongtai Ji, Qingsong Tu, Yang Zhao, Dominik Wierzbicki, Vincent Plisson, Ying Wang, Jiwei Wang, Kenneth Burch, Yong Yang, Hongli Zhu","doi":"10.1039/d4ee03160a","DOIUrl":null,"url":null,"abstract":"The investigation of all-solid-state sodium-sulfur batteries (ASSSBs) is still in its early stage, where the intermediates and mechanism of the complex 16-electron conversion reaction of the sulfur cathode remain unclear. Herein, this study for the first time presents a comprehensive investigation of the sulfur reaction mechanism in ASSSBs by combining electrochemical measurements, ex-situ synchrotron X-ray absorption spectroscopy (XAS), in-situ Raman spectroscopy, and first-principles calculations. The sulfur cathode undergoes a three-step solid-solid redox reaction following the thermodynamic principle. S8 first reduces to long-chain polysulfides, Na2S5 and Na2S4, then to Na2S2, and finally to Na2S, resulting in a three-plateau voltage profile when temperatures ≥ 90°C or C-rates ≤ C/100. However, under kinetics-limited conditions, temperatures ≤ 60°C and C-rates ≥ C/20, the Na2S2 phase is skipped, leading to a direct conversion from Na2S4 to Na2S and resulting a two-plateau voltage profile. First-principles calculations reveal that the formation energy of Na2S2 is only 4 meV/atom lower than the two-phase equilibrium of Na2S4 and Na2S, explaining its absence under kinetics-limited conditions. This work clarified the thermodynamic and kinetics-limited pathways of the 16-electron conversion reaction of the sulfur cathode in ASSSBs, thereby facilitating the development of high-performance ASSSBs.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"74 1","pages":""},"PeriodicalIF":51.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee03160a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The investigation of all-solid-state sodium-sulfur batteries (ASSSBs) is still in its early stage, where the intermediates and mechanism of the complex 16-electron conversion reaction of the sulfur cathode remain unclear. Herein, this study for the first time presents a comprehensive investigation of the sulfur reaction mechanism in ASSSBs by combining electrochemical measurements, ex-situ synchrotron X-ray absorption spectroscopy (XAS), in-situ Raman spectroscopy, and first-principles calculations. The sulfur cathode undergoes a three-step solid-solid redox reaction following the thermodynamic principle. S8 first reduces to long-chain polysulfides, Na2S5 and Na2S4, then to Na2S2, and finally to Na2S, resulting in a three-plateau voltage profile when temperatures ≥ 90°C or C-rates ≤ C/100. However, under kinetics-limited conditions, temperatures ≤ 60°C and C-rates ≥ C/20, the Na2S2 phase is skipped, leading to a direct conversion from Na2S4 to Na2S and resulting a two-plateau voltage profile. First-principles calculations reveal that the formation energy of Na2S2 is only 4 meV/atom lower than the two-phase equilibrium of Na2S4 and Na2S, explaining its absence under kinetics-limited conditions. This work clarified the thermodynamic and kinetics-limited pathways of the 16-electron conversion reaction of the sulfur cathode in ASSSBs, thereby facilitating the development of high-performance ASSSBs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全固态钠电池中的三步热力学与两步动力学限制硫反应
全固态钠硫电池(ASSSBs)的研究仍处于早期阶段,硫阴极复杂的 16 电子转换反应的中间产物和机理仍不清楚。在此,本研究首次结合电化学测量、原位同步辐射 X 射线吸收光谱(XAS)、原位拉曼光谱和第一原理计算,对 ASSSBs 中的硫反应机理进行了全面研究。硫阴极按照热力学原理进行了三步固-固氧化还原反应。S8 首先还原成长链多硫化物、Na2S5 和 Na2S4,然后还原成 Na2S2,最后还原成 Na2S,从而在温度≥ 90°C 或 C 速率≤ C/100 时产生三高原电压曲线。然而,在动力学限制条件下,即温度≤60°C 和 C 速率≥C/20 时,Na2S2 阶段被跳过,导致 Na2S4 直接转化为 Na2S,从而产生双波峰电压曲线。第一原理计算显示,Na2S2 的形成能仅比 Na2S4 和 Na2S 的两相平衡能低 4 meV/原子,这就解释了在动力学限制条件下没有 Na2S2 的原因。这项工作阐明了 ASSSB 中硫阴极 16 电子转换反应的热力学和动力学限制途径,从而促进了高性能 ASSSB 的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Reviews
Chemical Reviews 化学-化学综合
CiteScore
106.00
自引率
1.10%
发文量
278
审稿时长
4.3 months
期刊介绍: Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry. Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.
期刊最新文献
The Analysis of Electron Densities: From Basics to Emergent Applications Asymmetric Orbital Hybridization at MXene-VO2-x Interface Stabilizes Oxygen Vacancies for Enhanced Reversibility in Aqueous Zinc-ion Battery Noncanonical Amino Acid Incorporation in Animals and Animal Cells. Issue Editorial Masthead Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1