Tongtai Ji, Qingsong Tu, Yang Zhao, Dominik Wierzbicki, Vincent Plisson, Ying Wang, Jiwei Wang, Kenneth Burch, Yong Yang, Hongli Zhu
{"title":"Three-Step Thermodynamic vs. Two-Step Kinetics-Limited Sulfur Reactions in All-Solid-State Sodium Batteries","authors":"Tongtai Ji, Qingsong Tu, Yang Zhao, Dominik Wierzbicki, Vincent Plisson, Ying Wang, Jiwei Wang, Kenneth Burch, Yong Yang, Hongli Zhu","doi":"10.1039/d4ee03160a","DOIUrl":null,"url":null,"abstract":"The investigation of all-solid-state sodium-sulfur batteries (ASSSBs) is still in its early stage, where the intermediates and mechanism of the complex 16-electron conversion reaction of the sulfur cathode remain unclear. Herein, this study for the first time presents a comprehensive investigation of the sulfur reaction mechanism in ASSSBs by combining electrochemical measurements, ex-situ synchrotron X-ray absorption spectroscopy (XAS), in-situ Raman spectroscopy, and first-principles calculations. The sulfur cathode undergoes a three-step solid-solid redox reaction following the thermodynamic principle. S8 first reduces to long-chain polysulfides, Na2S5 and Na2S4, then to Na2S2, and finally to Na2S, resulting in a three-plateau voltage profile when temperatures ≥ 90°C or C-rates ≤ C/100. However, under kinetics-limited conditions, temperatures ≤ 60°C and C-rates ≥ C/20, the Na2S2 phase is skipped, leading to a direct conversion from Na2S4 to Na2S and resulting a two-plateau voltage profile. First-principles calculations reveal that the formation energy of Na2S2 is only 4 meV/atom lower than the two-phase equilibrium of Na2S4 and Na2S, explaining its absence under kinetics-limited conditions. This work clarified the thermodynamic and kinetics-limited pathways of the 16-electron conversion reaction of the sulfur cathode in ASSSBs, thereby facilitating the development of high-performance ASSSBs.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"74 1","pages":""},"PeriodicalIF":51.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee03160a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The investigation of all-solid-state sodium-sulfur batteries (ASSSBs) is still in its early stage, where the intermediates and mechanism of the complex 16-electron conversion reaction of the sulfur cathode remain unclear. Herein, this study for the first time presents a comprehensive investigation of the sulfur reaction mechanism in ASSSBs by combining electrochemical measurements, ex-situ synchrotron X-ray absorption spectroscopy (XAS), in-situ Raman spectroscopy, and first-principles calculations. The sulfur cathode undergoes a three-step solid-solid redox reaction following the thermodynamic principle. S8 first reduces to long-chain polysulfides, Na2S5 and Na2S4, then to Na2S2, and finally to Na2S, resulting in a three-plateau voltage profile when temperatures ≥ 90°C or C-rates ≤ C/100. However, under kinetics-limited conditions, temperatures ≤ 60°C and C-rates ≥ C/20, the Na2S2 phase is skipped, leading to a direct conversion from Na2S4 to Na2S and resulting a two-plateau voltage profile. First-principles calculations reveal that the formation energy of Na2S2 is only 4 meV/atom lower than the two-phase equilibrium of Na2S4 and Na2S, explaining its absence under kinetics-limited conditions. This work clarified the thermodynamic and kinetics-limited pathways of the 16-electron conversion reaction of the sulfur cathode in ASSSBs, thereby facilitating the development of high-performance ASSSBs.
期刊介绍:
Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry.
Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.