High throughput screening of new piezoelectric materials using graph machine learning and knowledge graph approach

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-10-16 DOI:10.1016/j.commatsci.2024.113445
Archit Anand, Priyanka Kumari, Ajay Kumar Kalyani
{"title":"High throughput screening of new piezoelectric materials using graph machine learning and knowledge graph approach","authors":"Archit Anand,&nbsp;Priyanka Kumari,&nbsp;Ajay Kumar Kalyani","doi":"10.1016/j.commatsci.2024.113445","DOIUrl":null,"url":null,"abstract":"<div><div>Computational methods, such as the Density Functional Theory (DFT), have long been a reliable tool for predicting material properties. However, their use in high-throughput screening has been limited due to computational costs. In this paper, we present a graph-based machine learning (ML) framework that overcomes these limitations, offering a more efficient approach to material selection and property prediction. Our framework, which includes a knowledge graph (KG) approach, and a graph neural network (GNN) based model, significantly reduces the search space by filtering materials from the Crystallography Open Database (COD) using KGs. We then use a modified Gated Graph ConvNet (GatedGCN) model to predict the maximum longitudinal piezoelectric modulus (<span><math><mrow><msub><mrow><msub><mrow><mo>‖</mo><mi>e</mi></mrow><mrow><mi>ij</mi></mrow></msub><mrow><mo>‖</mo></mrow></mrow><mrow><mi>max</mi></mrow></msub><mrow><mo>)</mo></mrow></mrow></math></span> of the screened materials. Based on the study, a list of new perovskite-based piezoelectric materials is shown with the top candidate reaching a value of <span><math><msub><mrow><msub><mrow><mo>‖</mo><mi>e</mi></mrow><mrow><mi>ij</mi></mrow></msub><mrow><mo>‖</mo></mrow></mrow><mrow><mi>max</mi></mrow></msub></math></span> as high as ∼ 10.81 C/m<sup>2</sup>.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"246 ","pages":"Article 113445"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624006669","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Computational methods, such as the Density Functional Theory (DFT), have long been a reliable tool for predicting material properties. However, their use in high-throughput screening has been limited due to computational costs. In this paper, we present a graph-based machine learning (ML) framework that overcomes these limitations, offering a more efficient approach to material selection and property prediction. Our framework, which includes a knowledge graph (KG) approach, and a graph neural network (GNN) based model, significantly reduces the search space by filtering materials from the Crystallography Open Database (COD) using KGs. We then use a modified Gated Graph ConvNet (GatedGCN) model to predict the maximum longitudinal piezoelectric modulus (eijmax) of the screened materials. Based on the study, a list of new perovskite-based piezoelectric materials is shown with the top candidate reaching a value of eijmax as high as ∼ 10.81 C/m2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用图式机器学习和知识图谱方法高通量筛选新型压电材料
长期以来,密度泛函理论(DFT)等计算方法一直是预测材料特性的可靠工具。然而,由于计算成本的原因,它们在高通量筛选中的应用受到了限制。在本文中,我们提出了一种基于图的机器学习(ML)框架,它克服了这些限制,为材料筛选和性能预测提供了一种更有效的方法。我们的框架包括知识图谱(KG)方法和基于图神经网络(GNN)的模型,通过使用知识图谱从晶体学开放数据库(COD)中筛选材料,大大缩小了搜索空间。然后,我们使用改进的门控图 ConvNet(GatedGCN)模型预测筛选材料的最大纵向压电模量(‖eij‖max)。根据这项研究,我们列出了一份基于包晶石的新型压电材料清单,其中最重要的候选材料的 "eij "max 值高达 ∼ 10.81 C/m2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
Study of ReaxFF molecular dynamics simulation about chemical reactions mechanisms of magnesium-aluminium spinel polishing Prediction of TMCCs@MoS2 heterostructures with homogeneous surface terminations as promising anodes for sodium and potassium ion batteries Energetic and structural stability of vacancy clusters in Al under external stress conditions Ab initio study of the laser-induced ultrafast spin dynamics on Ni4@C40H34 carbon cross Pitfalls of exchange–correlation functionals in description of magnetism: Cautionary tale of the FeRh alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1