Prediction of TMCCs@MoS2 heterostructures with homogeneous surface terminations as promising anodes for sodium and potassium ion batteries

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-11-30 DOI:10.1016/j.commatsci.2024.113568
Yuxuan Hou, Haoliang Liu, Qin Jiang, Sateng Li, Kai Wu, Yonghong Cheng, Bing Xiao
{"title":"Prediction of TMCCs@MoS2 heterostructures with homogeneous surface terminations as promising anodes for sodium and potassium ion batteries","authors":"Yuxuan Hou,&nbsp;Haoliang Liu,&nbsp;Qin Jiang,&nbsp;Sateng Li,&nbsp;Kai Wu,&nbsp;Yonghong Cheng,&nbsp;Bing Xiao","doi":"10.1016/j.commatsci.2024.113568","DOIUrl":null,"url":null,"abstract":"<div><div>The construction of the novel van der Waals TMCC//MoS<sub>2</sub> and surface anchored TMCC⊥MoS<sub>2</sub> heterostructures for their potential applications as anodes in alkaline metal ion batteries is investigated employing the first-principles calculations. We predict that the parallel (Nb<sub>2</sub>S<sub>2</sub>C//MoS<sub>2</sub> and Ta<sub>2</sub>S<sub>2</sub>C//MoS<sub>2</sub>) and anchored (Nb<sub>2</sub>S<sub>2</sub>C⊥MoS<sub>2</sub> and Ta<sub>2</sub>S<sub>2</sub>C⊥MoS<sub>2</sub>) heterostructures are thermodynamically and thermally stable, and all heterostructures show metallic like electronic band dispersions at Fermi level. The electrochemical energy storage performance of those heterostructures is characterized by calculating the theoretical capacities, open circuit voltages and ion diffusion barrier heights for Li, Na and K absorbates. The predicted total capacities of parallel and anchored TMCC@MoS<sub>2</sub> for LIB, SIB and PIB are in a range from 134 mAh/g to 334 mAh/g, while the obtained mean OCVs are situated between 0.40 V and 0.60 V. For those favorable migration pathways, the diffusion energy barrier heights are found to be in a range from 0.10 eV to 0.60 eV for alkaline metal ions. Notably, TMCC@MoS<sub>2</sub> heterostructures show promising electrochemical performance in terms of their relatively high theoretical capacities for the use as anodes in SIB (130 mAh/g–270 mAh/g) and PIB (134 mAh/g–198 mAh/g).</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"248 ","pages":"Article 113568"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624007894","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The construction of the novel van der Waals TMCC//MoS2 and surface anchored TMCC⊥MoS2 heterostructures for their potential applications as anodes in alkaline metal ion batteries is investigated employing the first-principles calculations. We predict that the parallel (Nb2S2C//MoS2 and Ta2S2C//MoS2) and anchored (Nb2S2C⊥MoS2 and Ta2S2C⊥MoS2) heterostructures are thermodynamically and thermally stable, and all heterostructures show metallic like electronic band dispersions at Fermi level. The electrochemical energy storage performance of those heterostructures is characterized by calculating the theoretical capacities, open circuit voltages and ion diffusion barrier heights for Li, Na and K absorbates. The predicted total capacities of parallel and anchored TMCC@MoS2 for LIB, SIB and PIB are in a range from 134 mAh/g to 334 mAh/g, while the obtained mean OCVs are situated between 0.40 V and 0.60 V. For those favorable migration pathways, the diffusion energy barrier heights are found to be in a range from 0.10 eV to 0.60 eV for alkaline metal ions. Notably, TMCC@MoS2 heterostructures show promising electrochemical performance in terms of their relatively high theoretical capacities for the use as anodes in SIB (130 mAh/g–270 mAh/g) and PIB (134 mAh/g–198 mAh/g).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
Study of ReaxFF molecular dynamics simulation about chemical reactions mechanisms of magnesium-aluminium spinel polishing Prediction of TMCCs@MoS2 heterostructures with homogeneous surface terminations as promising anodes for sodium and potassium ion batteries Energetic and structural stability of vacancy clusters in Al under external stress conditions Ab initio study of the laser-induced ultrafast spin dynamics on Ni4@C40H34 carbon cross Pitfalls of exchange–correlation functionals in description of magnetism: Cautionary tale of the FeRh alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1