Experimental and kinetic modeling study of cyclopentanone pyrolysis in a jet-stirred reactor

IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Combustion and Flame Pub Date : 2024-10-16 DOI:10.1016/j.combustflame.2024.113796
Hong Wang , Bingzhi Liu , Qiang Xu , Shijun Dong , Zhandong Wang , Long Zhu
{"title":"Experimental and kinetic modeling study of cyclopentanone pyrolysis in a jet-stirred reactor","authors":"Hong Wang ,&nbsp;Bingzhi Liu ,&nbsp;Qiang Xu ,&nbsp;Shijun Dong ,&nbsp;Zhandong Wang ,&nbsp;Long Zhu","doi":"10.1016/j.combustflame.2024.113796","DOIUrl":null,"url":null,"abstract":"<div><div>Cyclopentanone (CPN) is a widely available biofuel with excellent combustion properties, but detailed speciation profiles during its pyrolysis have rarely been studied. This work examines the pyrolysis of CPN in a jet-stirred reactor (JSR) at atmospheric pressure, with residence time of 2 s and a temperature range from 830 K to 1100 K. Dozens of pyrolysis intermediates and products were measured using synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) and gas chromatography (GC). Among them, several new species were observed, including water, carbon dioxide, formaldehyde, indene, 1,2-dihydroindene, naphthalene, 1,2-dihydronaphthalene, 1-methylnaphthalene, acenaphthylene, biphenyl, and fluorene. A detailed kinetic model was developed based on the literature, and in general, it predicted the experimental results for most species well. Kinetic analyses indicated that the consumption of CPN was controlled by the bimolecular reactions with H atom. The formation of water, carbon dioxide and formaldehyde could be explained by the reaction pathways of OH radical. The pyrolysis of CPN yielded a significant number of alkenes and alkynes at higher temperatures; the bimolecular addition reactions of these species with resonantly stabilized radicals are important to the formation of polycyclic aromatic hydrocarbons (PAHs). Based on those, this work provides valuable insights into CPN pyrolysis chemistry and it promotes the development of a comprehensive CPN combustion model.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"270 ","pages":"Article 113796"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024005054","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclopentanone (CPN) is a widely available biofuel with excellent combustion properties, but detailed speciation profiles during its pyrolysis have rarely been studied. This work examines the pyrolysis of CPN in a jet-stirred reactor (JSR) at atmospheric pressure, with residence time of 2 s and a temperature range from 830 K to 1100 K. Dozens of pyrolysis intermediates and products were measured using synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) and gas chromatography (GC). Among them, several new species were observed, including water, carbon dioxide, formaldehyde, indene, 1,2-dihydroindene, naphthalene, 1,2-dihydronaphthalene, 1-methylnaphthalene, acenaphthylene, biphenyl, and fluorene. A detailed kinetic model was developed based on the literature, and in general, it predicted the experimental results for most species well. Kinetic analyses indicated that the consumption of CPN was controlled by the bimolecular reactions with H atom. The formation of water, carbon dioxide and formaldehyde could be explained by the reaction pathways of OH radical. The pyrolysis of CPN yielded a significant number of alkenes and alkynes at higher temperatures; the bimolecular addition reactions of these species with resonantly stabilized radicals are important to the formation of polycyclic aromatic hydrocarbons (PAHs). Based on those, this work provides valuable insights into CPN pyrolysis chemistry and it promotes the development of a comprehensive CPN combustion model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
喷射搅拌式反应器中环戊酮热解的实验和动力学模型研究
环戊酮(CPN)是一种广泛使用的生物燃料,具有优异的燃烧特性,但很少有人研究过其热解过程中的详细规格剖面。本研究采用同步辐射真空紫外光离子化质谱法(SVUV-PIMS)和气相色谱法(GC)对 CPN 在常压、停留时间为 2 秒、温度范围为 830 K 至 1100 K 的喷射搅拌反应器(JSR)中的热解过程进行了研究。其中观察到了一些新的物种,包括水、二氧化碳、甲醛、茚、1,2-二氢茚、萘、1,2-二氢萘、1-甲基萘、苊烯、联苯和芴。根据文献建立了一个详细的动力学模型,该模型总体上很好地预测了大多数物种的实验结果。动力学分析表明,氯化萘的消耗受控于与 H 原子的双分子反应。水、二氧化碳和甲醛的生成可以用 OH 自由基的反应途径来解释。在较高温度下,CPN 的热解产生了大量的烯烃和炔烃;这些物质与共振稳定自由基的双分子加成反应对多环芳烃的形成非常重要。在此基础上,这项工作为氯化萘热解化学提供了宝贵的见解,并促进了氯化萘燃烧综合模型的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
期刊最新文献
A comprehensive parametric study on NO and N2O formation in ammonia-methane cofired premixed flames: Spatially resolved measurements and kinetic analysis Simultaneous Schlieren and direct photography of detonation diffraction regimes in hydrogen mixtures Elucidating high-pressure chemistry in acetylene oxidation: Jet-stirred reactor experiments, pressure effects, and kinetic interpretation A Bayesian approach to estimate flame spread model parameters over the cylindrical PMMA samples under various gravity conditions Ab initio intermolecular interactions mediate thermochemically real-fluid effects that affect system reactivity: The first application of high-order Virial EoS and first-principles multi-body potentials in trans-/super-critical autoignition modelling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1