Multiple hydrothermal events at martian surface revealed by H and Cl isotope systematics of melt inclusions and hydrous minerals from chassignite NWA 2737
Sen Hu , Mahesh Anand , Ian A. Franchi , Xuchao Zhao , Alice Stephant , Magali Bonifacie , Huicun He , Wei Yang , Jialong Hao , Yangting Lin
{"title":"Multiple hydrothermal events at martian surface revealed by H and Cl isotope systematics of melt inclusions and hydrous minerals from chassignite NWA 2737","authors":"Sen Hu , Mahesh Anand , Ian A. Franchi , Xuchao Zhao , Alice Stephant , Magali Bonifacie , Huicun He , Wei Yang , Jialong Hao , Yangting Lin","doi":"10.1016/j.epsl.2024.119072","DOIUrl":null,"url":null,"abstract":"<div><div>The chassignites and nakhlites could have co-magmatic origin but display distinct hydrogen and chlorine isotopic compositions, indicating that they may have experienced distinct hydrothermal activities on Mars. However, the details are not yet fully understood. Here, we performed H and Cl isotopic investigations on hydrous minerals (kaersutite and apatite) and glass-bearing melt inclusions from chassignite NWA 2737 to unravel the details of the hydrothermal events experienced by chassignites on Mars. Our results demonstrate that at least two hydrothermal events on Mars have been recorded in NWA 2737. A D- and <sup>37</sup>Cl-rich martian crustal/underground fluid was added to the parent magma of NWA 2737 prior to the entrapment of melt inclusions and later interaction of the parent rock with a D-poor fluid, probably deriving from magma degassing. The notable high-δD values (up to 6239‰) of kaersutite in NWA 2737 are comparable with those recorded in younger shergottites, suggesting that the martian exchangeable water reservoir has retained a nearly constant δD value over the past 1.3 Ga.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"648 ","pages":"Article 119072"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24005041","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The chassignites and nakhlites could have co-magmatic origin but display distinct hydrogen and chlorine isotopic compositions, indicating that they may have experienced distinct hydrothermal activities on Mars. However, the details are not yet fully understood. Here, we performed H and Cl isotopic investigations on hydrous minerals (kaersutite and apatite) and glass-bearing melt inclusions from chassignite NWA 2737 to unravel the details of the hydrothermal events experienced by chassignites on Mars. Our results demonstrate that at least two hydrothermal events on Mars have been recorded in NWA 2737. A D- and 37Cl-rich martian crustal/underground fluid was added to the parent magma of NWA 2737 prior to the entrapment of melt inclusions and later interaction of the parent rock with a D-poor fluid, probably deriving from magma degassing. The notable high-δD values (up to 6239‰) of kaersutite in NWA 2737 are comparable with those recorded in younger shergottites, suggesting that the martian exchangeable water reservoir has retained a nearly constant δD value over the past 1.3 Ga.
期刊介绍:
Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.