Preparation of sandwich-structured ternary nanocomposites porous carbon-derived from waste tires/manganese dioxide/polyaniline as electrode for supercapacitor
Dazhi Zhang , Yaqi Wang , Maosheng Yang , Jiajia Zhang , Ju Wu , Honglai Liu , Jianjun Wu , Peipei Li
{"title":"Preparation of sandwich-structured ternary nanocomposites porous carbon-derived from waste tires/manganese dioxide/polyaniline as electrode for supercapacitor","authors":"Dazhi Zhang , Yaqi Wang , Maosheng Yang , Jiajia Zhang , Ju Wu , Honglai Liu , Jianjun Wu , Peipei Li","doi":"10.1016/j.jelechem.2024.118692","DOIUrl":null,"url":null,"abstract":"<div><div>The development of multicomponent electrodes incorporating diverse capacitive materials has become a viable strategy for engineering high-performance supercapacitors. In this paper, a sandwich-structured ternary composite consisting of polyaniline (PANI), manganese dioxide (MnO<sub>2</sub>), and porous carbon-derived from waste tires (PCDWT) has been synthesized via in-situ chemical oxidative polymerization of aniline. The composite features worm-like PANI tightly and uniformly coated on pompon-like PCDWT/MnO<sub>2</sub> surfaces, facilitated by MnO<sub>2</sub> serving as a reactive template during polymerization. The ternary nanocomposite PCDWT/MnO<sub>2</sub>/PANI-3 g exhibited exceptional electrochemical performance, achieving a specific capacitance of 369.6F/g at 1.0 A/g in three-electrode configuration. Remarkably, it retained 95.5 % of its initial capacitance after 6,000 charge–discharge cycles at 10 A/g. Moreover, an asymmetric supercapacitor fabricated with PCDWT/MnO<sub>2</sub>/PANI-3 g and PCDWT electrodes exhibited a specific capacitance of 91.34F/g at 0.5 A/g. The device delivered a maximum energy density of 36.66 Wh kg<sup>−1</sup> at a power density of 424.99 W kg<sup>−1</sup> and maintained capacitance holdings of 87.72 % after 10,000 cycles at 10 A/g. This superior electrochemical performance can be attributed to the synergistic effects of the PCDWT/MnO<sub>2</sub> scaffold, which enhances charge transfer and electron transport, and the outer PANI layer, which improves the electrical conductivity of MnO<sub>2</sub>, protects against dissolution, and increases electroactive sites.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"974 ","pages":"Article 118692"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724006702","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of multicomponent electrodes incorporating diverse capacitive materials has become a viable strategy for engineering high-performance supercapacitors. In this paper, a sandwich-structured ternary composite consisting of polyaniline (PANI), manganese dioxide (MnO2), and porous carbon-derived from waste tires (PCDWT) has been synthesized via in-situ chemical oxidative polymerization of aniline. The composite features worm-like PANI tightly and uniformly coated on pompon-like PCDWT/MnO2 surfaces, facilitated by MnO2 serving as a reactive template during polymerization. The ternary nanocomposite PCDWT/MnO2/PANI-3 g exhibited exceptional electrochemical performance, achieving a specific capacitance of 369.6F/g at 1.0 A/g in three-electrode configuration. Remarkably, it retained 95.5 % of its initial capacitance after 6,000 charge–discharge cycles at 10 A/g. Moreover, an asymmetric supercapacitor fabricated with PCDWT/MnO2/PANI-3 g and PCDWT electrodes exhibited a specific capacitance of 91.34F/g at 0.5 A/g. The device delivered a maximum energy density of 36.66 Wh kg−1 at a power density of 424.99 W kg−1 and maintained capacitance holdings of 87.72 % after 10,000 cycles at 10 A/g. This superior electrochemical performance can be attributed to the synergistic effects of the PCDWT/MnO2 scaffold, which enhances charge transfer and electron transport, and the outer PANI layer, which improves the electrical conductivity of MnO2, protects against dissolution, and increases electroactive sites.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.