Shao-Hui Huang , Jie Wu , Jing Chi , Tai-Shen Yang , Jin-Chao Cao
{"title":"Surface structure optimization by selective dissolution to improve the oxygen reduction performance of SmMn2O5","authors":"Shao-Hui Huang , Jie Wu , Jing Chi , Tai-Shen Yang , Jin-Chao Cao","doi":"10.1016/j.jelechem.2025.119052","DOIUrl":null,"url":null,"abstract":"<div><div>Selective dissolution is an effective strategy to improve the catalytic performance. This method was used to regulate the surface structure of SmMn<sub>2</sub>O<sub>5</sub> through HNO<sub>3</sub> acidification to promote its oxygen reduction reaction (ORR) performance. The relationship between the structures and ORR performances of SmMn<sub>2</sub>O<sub>5</sub> acidified by different concentrations of HNO<sub>3</sub> (5-8 M) was investigated. HNO<sub>3</sub> can selectively dissolve part of Sm, which reduces Sm/Mn ratio, and increases Mn<sup>4+</sup>/Mn<sup>3+</sup> and surface adsorbed oxygen/lattice oxygen ratios on the catalyst surface. Especially, the increase of Mn<sup>4+</sup> content optimizes the adsorption of oxygen-containing intermediates on Mn<sup>3+</sup> active sites and enhances the ORR activity. When treated with 7 M HNO<sub>3</sub> for 10 h, the acidified SmMn<sub>2</sub>O<sub>5</sub> surface has suitable Mn<sup>4+</sup>/Mn<sup>3+</sup> ratio, exhibiting excellent ORR performance. Compared with SmMn<sub>2</sub>O<sub>5</sub>, the half-wave potential of the acidified SmMn<sub>2</sub>O<sub>5</sub> increases from 0.80 V to 0.83 V, and the diffusion-limited current density improves from 3.44 mA·cm<sup>−2</sup> to 4.76 mA·cm<sup>−2</sup>. Additionally, the synergistic catalytic mechanism of Mn<sup>4+</sup> with Mn<sup>3+</sup> active sites was well discussed.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"984 ","pages":"Article 119052"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665725001250","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Selective dissolution is an effective strategy to improve the catalytic performance. This method was used to regulate the surface structure of SmMn2O5 through HNO3 acidification to promote its oxygen reduction reaction (ORR) performance. The relationship between the structures and ORR performances of SmMn2O5 acidified by different concentrations of HNO3 (5-8 M) was investigated. HNO3 can selectively dissolve part of Sm, which reduces Sm/Mn ratio, and increases Mn4+/Mn3+ and surface adsorbed oxygen/lattice oxygen ratios on the catalyst surface. Especially, the increase of Mn4+ content optimizes the adsorption of oxygen-containing intermediates on Mn3+ active sites and enhances the ORR activity. When treated with 7 M HNO3 for 10 h, the acidified SmMn2O5 surface has suitable Mn4+/Mn3+ ratio, exhibiting excellent ORR performance. Compared with SmMn2O5, the half-wave potential of the acidified SmMn2O5 increases from 0.80 V to 0.83 V, and the diffusion-limited current density improves from 3.44 mA·cm−2 to 4.76 mA·cm−2. Additionally, the synergistic catalytic mechanism of Mn4+ with Mn3+ active sites was well discussed.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.