Effect and mechanism of stiffness distribution and sag-span ratio of main cables on structural dynamic characteristics and flutter performance of multi-cable suspension bridges

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Journal of Wind Engineering and Industrial Aerodynamics Pub Date : 2024-10-16 DOI:10.1016/j.jweia.2024.105919
Yunliang Shi, Yongxin Yang, Jinbo Zhu, Jinjie Zhang
{"title":"Effect and mechanism of stiffness distribution and sag-span ratio of main cables on structural dynamic characteristics and flutter performance of multi-cable suspension bridges","authors":"Yunliang Shi,&nbsp;Yongxin Yang,&nbsp;Jinbo Zhu,&nbsp;Jinjie Zhang","doi":"10.1016/j.jweia.2024.105919","DOIUrl":null,"url":null,"abstract":"<div><div>By incorporating extra load-carrying main cables, multi-cable suspension bridges provide increased flexibility in adjusting structural dynamic characteristics, and new possible solutions to the flutter instability problem of long-span bridges. Based on a multi-cable suspension bridge, this paper presents a particular insight into the dynamic characteristics which was contrast with double-cable suspension bridge. Furthermore, the influence of stiffness distribution and sag-span ratio of main cables on the dynamic characteristics was also studied. It is shown that due to the different contribution of the main cables, multi-cable suspension bridge has various torsional modes with similar vibration shapes of the stiffening girder, which is quite different from double-cable suspension bridge. Changes in stiffness distribution of main cables also have significant effects on the form of these torsional modes. On this basis, the flutter performance of multi-cable suspension bridge is studied by modality-driven method. The results indicate that the flutter critical wind speed increases with the increase of sag-span ratio and stiffness ratio of inner and outer main cables, and multi-cable suspension bridge can obtain better flutter performance than double-cable suspension bridge with appropriate stiffness distribution. The change of stiffness distribution and sag-span ratio may lead to the transition of flutter dominant mode.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"254 ","pages":"Article 105919"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524002824","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

By incorporating extra load-carrying main cables, multi-cable suspension bridges provide increased flexibility in adjusting structural dynamic characteristics, and new possible solutions to the flutter instability problem of long-span bridges. Based on a multi-cable suspension bridge, this paper presents a particular insight into the dynamic characteristics which was contrast with double-cable suspension bridge. Furthermore, the influence of stiffness distribution and sag-span ratio of main cables on the dynamic characteristics was also studied. It is shown that due to the different contribution of the main cables, multi-cable suspension bridge has various torsional modes with similar vibration shapes of the stiffening girder, which is quite different from double-cable suspension bridge. Changes in stiffness distribution of main cables also have significant effects on the form of these torsional modes. On this basis, the flutter performance of multi-cable suspension bridge is studied by modality-driven method. The results indicate that the flutter critical wind speed increases with the increase of sag-span ratio and stiffness ratio of inner and outer main cables, and multi-cable suspension bridge can obtain better flutter performance than double-cable suspension bridge with appropriate stiffness distribution. The change of stiffness distribution and sag-span ratio may lead to the transition of flutter dominant mode.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主缆刚度分布和矢跨比对多缆悬索桥结构动力特性和飘移性能的影响及机理
通过加入额外的承载主缆,多缆悬索桥在调整结构动态特性方面提供了更大的灵活性,并为解决大跨度桥梁的飘移失稳问题提供了新的可能方案。本文以多索悬索桥为基础,对比双索悬索桥,对其动态特性进行了深入研究。此外,还研究了主缆刚度分布和矢跨比对动态特性的影响。结果表明,由于主缆的作用不同,多缆悬索桥具有各种扭转模式,加劲梁的振动形状相似,这与双缆悬索桥截然不同。主缆刚度分布的变化对这些扭转模态的形式也有显著影响。在此基础上,采用模态驱动法研究了多索悬索桥的扑动性能。结果表明,扑翼临界风速随内外主缆的矢跨比和刚度比的增大而增大,多索悬索桥比具有适当刚度分布的双索悬索桥能获得更好的扑翼性能。刚度分布和矢跨比的变化可能会导致扑翼主导模式的转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.90
自引率
22.90%
发文量
306
审稿时长
4.4 months
期刊介绍: The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects. Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.
期刊最新文献
Experimental study on wind-induced vibration and aerodynamic interference effects of flexible photovoltaics Calibration of pressures measured via tubing systems: Accounting for laboratory environmental variations between tubing response measurement and wind tunnel testing Full-scale experimental investigation of wind loading on ballasted photovoltaic arrays mounted on flat roofs Alleviating tunnel aerodynamics through hybrid suction & blowing techniques applied to train nose sections Non-Gaussian non-stationary wind speed simulation based on time-varying autoregressive model and maximum entropy method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1