Effect of the position of Mg replacing Ni on O3-NaNi1/3Fe1/3Mn1/3O2 on the structural stability of cathode materials

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Solid State Ionics Pub Date : 2024-10-16 DOI:10.1016/j.ssi.2024.116718
{"title":"Effect of the position of Mg replacing Ni on O3-NaNi1/3Fe1/3Mn1/3O2 on the structural stability of cathode materials","authors":"","doi":"10.1016/j.ssi.2024.116718","DOIUrl":null,"url":null,"abstract":"<div><div>O3-NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> (NaNFM) materials are susceptible to complex phase transitions during electrical cycling leading to poor structural, capacity retention and multiplicity properties. These drawbacks hinder the application of NaNFM in sodium-ion batteries. Here, Mg<sup>2+</sup> with larger ionic radius was used to dope its transition metal layer Ni site. The effects of Mg<sup>2+</sup> doped NaNFM crystal structure and transition metal valence states on its electrochemical properties were investigated by XRD, SEM, and XPS. The capacity retention of NaNMFM-0.02 (84.05 %) was higher than that of NaNFM (73 %) after 200 cycles of the material at 5C. In addition, NaNMFM-0.02 achieved a first discharge specific capacity of 146.5 mAh/g at high voltage. Based on structural and electrochemical analyses, this improvement is attributed to the fact that magnesium acts as a “pillar” to stabilize the crystal structure of NaNFM, while magnesium doping reduces the Jahn-Teller effect. As a result, the material has better electrochemical properties.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002662","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

O3-NaNi1/3Fe1/3Mn1/3O2 (NaNFM) materials are susceptible to complex phase transitions during electrical cycling leading to poor structural, capacity retention and multiplicity properties. These drawbacks hinder the application of NaNFM in sodium-ion batteries. Here, Mg2+ with larger ionic radius was used to dope its transition metal layer Ni site. The effects of Mg2+ doped NaNFM crystal structure and transition metal valence states on its electrochemical properties were investigated by XRD, SEM, and XPS. The capacity retention of NaNMFM-0.02 (84.05 %) was higher than that of NaNFM (73 %) after 200 cycles of the material at 5C. In addition, NaNMFM-0.02 achieved a first discharge specific capacity of 146.5 mAh/g at high voltage. Based on structural and electrochemical analyses, this improvement is attributed to the fact that magnesium acts as a “pillar” to stabilize the crystal structure of NaNFM, while magnesium doping reduces the Jahn-Teller effect. As a result, the material has better electrochemical properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镁取代镍在 O3-NaNi1/3Fe1/3Mn1/3O2 上的位置对阴极材料结构稳定性的影响
O3-NaNi1/3Fe1/3Mn1/3O2(NaNFM)材料在电循环过程中容易发生复杂的相变,导致结构、容量保持和倍率特性不佳。这些缺点阻碍了 NaNFM 在钠离子电池中的应用。在这里,采用了离子半径较大的 Mg2+ 来掺杂其过渡金属层 Ni 位点。通过 XRD、SEM 和 XPS 研究了掺杂 Mg2+ 的 NaNFM 晶体结构和过渡金属价态对其电化学性能的影响。在 5C 下循环 200 次后,NaNMFM-0.02 的容量保持率(84.05%)高于 NaNFM(73%)。此外,NaNMFM-0.02 在高电压下的首次放电比容量达到了 146.5 mAh/g。根据结构和电化学分析,这一改进归因于镁作为 "支柱 "稳定了 NaNFM 的晶体结构,同时镁的掺杂降低了 Jahn-Teller 效应。因此,该材料具有更好的电化学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
期刊最新文献
Mixed-valence Sm-doped LaF3 crystals as ion-electron conductors: Crystal growth and impedance characterization Effect of the position of Mg replacing Ni on O3-NaNi1/3Fe1/3Mn1/3O2 on the structural stability of cathode materials Lowering the sintering temperature of LiCoO2 using LiOH aqueous solution High conductivity of a fuel cell through a hydrogen bond network within an interpenetrating anion exchange membrane The electrical conductive properties analysis of ytterbium doped calcium zirconate proton conductor solid electrolyte based on crystal defect chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1