High-performance polyurea nanofiltration membrane for waste lithium-ion batteries recycling: Leveraging synergistic control of bulk and interfacial monomer diffusion

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Pub Date : 2024-10-15 DOI:10.1016/j.memsci.2024.123405
Shiyu Xiao , Yang Cao , Yinhua Wan , Xiaofeng Hang , Jianquan Luo
{"title":"High-performance polyurea nanofiltration membrane for waste lithium-ion batteries recycling: Leveraging synergistic control of bulk and interfacial monomer diffusion","authors":"Shiyu Xiao ,&nbsp;Yang Cao ,&nbsp;Yinhua Wan ,&nbsp;Xiaofeng Hang ,&nbsp;Jianquan Luo","doi":"10.1016/j.memsci.2024.123405","DOIUrl":null,"url":null,"abstract":"<div><div>The development of high-performance nanofiltration (NF) membranes with extreme chemical stability is urgently needed for the recovery of spent lithium. In this study, a series of polyurea membranes with high lithium recovery efficiency and pH stability were fabricated by zone-regulated interfacial polymerization (IP). The reaction inhibitor Cu<sup>2+</sup> in the bulk aqueous phase reduces IP intensity by reversibly binding to the amino groups of polyethyleneimine monomers through chelate bonds. Meanwhile, surfactant promote the uniform diffusion of macromolecular aqueous monomers at the phase interface. The milder polymerization reaction and the more stable phase interface endow the polyurea membrane (NF<sub>10k PEI-SDS-Cu</sub><sup>2+</sup>) with higher water permeance (2.1 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>), desirable MgCl<sub>2</sub> rejection (94.7 %), and excellent fabrication repeatability. Moreover, the membrane demonstrates stable separation selectivity for Co<sup>2+</sup>/Li<sup>+</sup> and SO<sub>4</sub><sup>2−</sup>/Li<sup>+</sup> under conditions of 0.05 mol L<sup>−1</sup> H<sub>2</sub>SO<sub>4</sub> and 2 mol L<sup>−1</sup> LiOH, respectively. Our study provides a facile method for constructing NF membranes with extreme pH stability and confirms the feasibility of membrane-based lithium recovery.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"714 ","pages":"Article 123405"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824009992","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of high-performance nanofiltration (NF) membranes with extreme chemical stability is urgently needed for the recovery of spent lithium. In this study, a series of polyurea membranes with high lithium recovery efficiency and pH stability were fabricated by zone-regulated interfacial polymerization (IP). The reaction inhibitor Cu2+ in the bulk aqueous phase reduces IP intensity by reversibly binding to the amino groups of polyethyleneimine monomers through chelate bonds. Meanwhile, surfactant promote the uniform diffusion of macromolecular aqueous monomers at the phase interface. The milder polymerization reaction and the more stable phase interface endow the polyurea membrane (NF10k PEI-SDS-Cu2+) with higher water permeance (2.1 L m−2 h−1 bar−1), desirable MgCl2 rejection (94.7 %), and excellent fabrication repeatability. Moreover, the membrane demonstrates stable separation selectivity for Co2+/Li+ and SO42−/Li+ under conditions of 0.05 mol L−1 H2SO4 and 2 mol L−1 LiOH, respectively. Our study provides a facile method for constructing NF membranes with extreme pH stability and confirms the feasibility of membrane-based lithium recovery.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于废旧锂离子电池回收的高性能聚脲纳滤膜:利用对主体和界面单体扩散的协同控制
回收废锂迫切需要开发具有极高化学稳定性的高性能纳滤膜(NF)。本研究通过分区调节界面聚合(IP)法制备了一系列具有高锂回收效率和 pH 稳定性的聚脲膜。大体积水相中的反应抑制剂 Cu2+ 通过螯合键与聚乙烯亚胺单体的氨基可逆结合,从而降低了 IP 强度。同时,表面活性剂促进了大分子水相单体在相界面的均匀扩散。更温和的聚合反应和更稳定的相界面使聚脲膜(NF10k PEI-SDS-Cu2+)具有更高的透水性(2.1 L m-2 h-1 bar-1)、理想的 MgCl2 阻隔率(94.7%)和出色的制造重复性。此外,在 0.05 mol L-1 H2SO4 和 2 mol L-1 LiOH 条件下,该膜分别对 Co2+/Li+ 和 SO42-/Li+ 具有稳定的分离选择性。我们的研究为构建具有极强 pH 稳定性的 NF 膜提供了一种简便的方法,并证实了基于膜的锂回收的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
期刊最新文献
Stringing covalent organic framework particles for preparing highly loaded mixed-matrix membranes for efficient and precise dye separation High rejection seawater reverse osmosis TFC membranes with a polyamide-polysulfonamide interpenetrated functional layer Lattice-defective metal-organic framework membranes from filling mesoporous colloidal networks for monovalent ion separation Methanol tolerable ultrathin proton exchange membrane fabricated via in-situ ionic self-crosslinking strategy for high-performance DMFCs Non-metallic cation and anion co-doped perovskite oxide ceramic membranes for high-efficiency oxygen permeation at low temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1