Jia-Yin Lin , Chih-Ying Wang , Bing-Ze Lin , Kun-Yi Andrew Lin
{"title":"Impact of hafnium dioxide morphology on catalytic transfer hydrogenation of methyl levulinate to γ-valerolactone: A comparative study","authors":"Jia-Yin Lin , Chih-Ying Wang , Bing-Ze Lin , Kun-Yi Andrew Lin","doi":"10.1016/j.jtice.2024.105801","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The catalytic transfer hydrogenation (CTH) of methyl levulinate (ML) to γ-valerolactone (GVL) is a promising method for producing renewable fuels and chemicals. The efficiency of this process depends heavily on the choice of catalysts, with morphology playing a critical role in their performance.</div></div><div><h3>Methods</h3><div>This study synthesized and characterized rice-like (r-HfO₂) and ball-like (b-HfO₂) hafnium oxide nanostructures. r-HfO₂ was prepared using a microwave system, while b-HfO₂ was synthesized via a solvothermal method. The catalysts were characterized using SEM, TEM, XRD, TPD-NH₃ analysis, and nitrogen sorption isotherms to determine their morphological, structural, and acidic properties. The catalytic performance of these nanostructures was tested under optimal conditions of 160 °C and 2 h in a batch-type solvothermal reactor.</div></div><div><h3>Significant Findings</h3><div>The results showed that b-HfO₂ exhibited a conversion efficiency of 90 % and a GVL yield of 90 %, outperforming r-HfO₂, which achieved 94.8 % conversion and 75.2 % yield. Recyclability tests confirmed the durability of both catalysts, with b-HfO₂ maintaining better activity. Detailed analyses revealed that b-HfO₂ exhibits superior catalytic activity and energy efficiency, achieving higher GVL yield and better energy efficiency. The conversion rates reached up to 100 % for both catalysts at 200 °C, with b-HfO₂ achieving a higher GVL yield and better energy efficiency. These findings demonstrate the potential of HfO₂-based catalysts, especially b-HfO₂, in efficiently converting biomass-derived feedstocks to valuable chemicals.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105801"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024004590","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The catalytic transfer hydrogenation (CTH) of methyl levulinate (ML) to γ-valerolactone (GVL) is a promising method for producing renewable fuels and chemicals. The efficiency of this process depends heavily on the choice of catalysts, with morphology playing a critical role in their performance.
Methods
This study synthesized and characterized rice-like (r-HfO₂) and ball-like (b-HfO₂) hafnium oxide nanostructures. r-HfO₂ was prepared using a microwave system, while b-HfO₂ was synthesized via a solvothermal method. The catalysts were characterized using SEM, TEM, XRD, TPD-NH₃ analysis, and nitrogen sorption isotherms to determine their morphological, structural, and acidic properties. The catalytic performance of these nanostructures was tested under optimal conditions of 160 °C and 2 h in a batch-type solvothermal reactor.
Significant Findings
The results showed that b-HfO₂ exhibited a conversion efficiency of 90 % and a GVL yield of 90 %, outperforming r-HfO₂, which achieved 94.8 % conversion and 75.2 % yield. Recyclability tests confirmed the durability of both catalysts, with b-HfO₂ maintaining better activity. Detailed analyses revealed that b-HfO₂ exhibits superior catalytic activity and energy efficiency, achieving higher GVL yield and better energy efficiency. The conversion rates reached up to 100 % for both catalysts at 200 °C, with b-HfO₂ achieving a higher GVL yield and better energy efficiency. These findings demonstrate the potential of HfO₂-based catalysts, especially b-HfO₂, in efficiently converting biomass-derived feedstocks to valuable chemicals.
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.