{"title":"Impact of hardware impairments and BS antenna tilt on 3D drone localization and tracking","authors":"Mehari Meles, Akash Rajasekaran, Estifanos Yohannes Menta, Lauri Mela, Riku Jäntti","doi":"10.1016/j.aeue.2024.155543","DOIUrl":null,"url":null,"abstract":"<div><div>Today, GPS-free drone localization is increasingly gaining attention in various applications, but it faces significant accuracy challenges in three-dimensional (3D) space due to various impairments. This study investigates the effects of carrier frequency offset (CFO), phase noise (PN), and down-tilted base station (BS) antennas on drone positioning and tracking. Additionally, we explore the impact of inter-site distance (ISD) and BS density on drone position estimation accuracy. In our methodology, we consider a flying drone equipped with a single transmission antenna and BSs configured with 4 × 4 antennas under specific impairments. We first analyze the effects of these impairments on the signal’s covariance matrix. Then, using the MUSIC algorithm, we estimate the azimuth and elevation angles, which serve as the basis for drone localization using the Least Squares (LS) method across all BSs. Finally, the estimated positions feed into an Extended Kalman Filter (EKF) for tracking. Our results present a sequential analysis of the impact of all impairments on the off-diagonal covariance matrix, on the Angle of Arrival (AOA) estimation and 3D drone localization. We use simulations to demonstrate how hardware impairments affect 3D drone localization accuracy under varying ISD and BS densities.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"187 ","pages":"Article 155543"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841124004291","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Today, GPS-free drone localization is increasingly gaining attention in various applications, but it faces significant accuracy challenges in three-dimensional (3D) space due to various impairments. This study investigates the effects of carrier frequency offset (CFO), phase noise (PN), and down-tilted base station (BS) antennas on drone positioning and tracking. Additionally, we explore the impact of inter-site distance (ISD) and BS density on drone position estimation accuracy. In our methodology, we consider a flying drone equipped with a single transmission antenna and BSs configured with 4 × 4 antennas under specific impairments. We first analyze the effects of these impairments on the signal’s covariance matrix. Then, using the MUSIC algorithm, we estimate the azimuth and elevation angles, which serve as the basis for drone localization using the Least Squares (LS) method across all BSs. Finally, the estimated positions feed into an Extended Kalman Filter (EKF) for tracking. Our results present a sequential analysis of the impact of all impairments on the off-diagonal covariance matrix, on the Angle of Arrival (AOA) estimation and 3D drone localization. We use simulations to demonstrate how hardware impairments affect 3D drone localization accuracy under varying ISD and BS densities.
期刊介绍:
AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including:
signal and system theory, digital signal processing
network theory and circuit design
information theory, communication theory and techniques, modulation, source and channel coding
switching theory and techniques, communication protocols
optical communications
microwave theory and techniques, radar, sonar
antennas, wave propagation
AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.