Physics-informed neural network for cross-dynamics vehicle trajectory stitching

Keke Long , Xiaowei Shi , Xiaopeng Li
{"title":"Physics-informed neural network for cross-dynamics vehicle trajectory stitching","authors":"Keke Long ,&nbsp;Xiaowei Shi ,&nbsp;Xiaopeng Li","doi":"10.1016/j.tre.2024.103799","DOIUrl":null,"url":null,"abstract":"<div><div>High-accuracy long-coverage vehicle trajectory data can benefit the investigations of various traffic phenomena. However, existing datasets frequently contain broken trajectories due to sensing limitations, which impedes a thorough understanding of traffic. To address this issue, this paper proposes a Physics-Informed Neural Network (PINN)-based method for stitching broken trajectories. The proposed PINN-based method enhances traditional neural networks by integrating physics priors, including vehicle kinematics and boundary conditions, aiming to provide information beyond training domain and regularization, thus increasing method accuracy and extrapolation ability for cross-dynamics scenarios (e.g., extrapolating from low-speed training data to reconstruct high-speed trajectories). Two publicly available vehicle trajectory datasets, NGSIM and HighSIM, were adopted to validate the proposed PINN-based method, and four biased training scenarios were designed to assess the PINN-based method’s extrapolation ability. Results indicate that the PINN-based method demonstrated superior performance regarding trajectory stitching accuracy and consistency compared to benchmark models. The dataset processed using our proposed PINN-based method has been made publicly available online to support the traffic research community. Additionally, this PINN-based approach can be applied to a broader range of scenarios that include physics-based priors.</div></div>","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"192 ","pages":"Article 103799"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1366554524003909","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

High-accuracy long-coverage vehicle trajectory data can benefit the investigations of various traffic phenomena. However, existing datasets frequently contain broken trajectories due to sensing limitations, which impedes a thorough understanding of traffic. To address this issue, this paper proposes a Physics-Informed Neural Network (PINN)-based method for stitching broken trajectories. The proposed PINN-based method enhances traditional neural networks by integrating physics priors, including vehicle kinematics and boundary conditions, aiming to provide information beyond training domain and regularization, thus increasing method accuracy and extrapolation ability for cross-dynamics scenarios (e.g., extrapolating from low-speed training data to reconstruct high-speed trajectories). Two publicly available vehicle trajectory datasets, NGSIM and HighSIM, were adopted to validate the proposed PINN-based method, and four biased training scenarios were designed to assess the PINN-based method’s extrapolation ability. Results indicate that the PINN-based method demonstrated superior performance regarding trajectory stitching accuracy and consistency compared to benchmark models. The dataset processed using our proposed PINN-based method has been made publicly available online to support the traffic research community. Additionally, this PINN-based approach can be applied to a broader range of scenarios that include physics-based priors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于交叉动力学车辆轨迹拼接的物理信息神经网络
高精度、长覆盖范围的车辆轨迹数据有助于研究各种交通现象。然而,由于传感的局限性,现有数据集经常包含断裂的轨迹,这阻碍了对交通的全面了解。为解决这一问题,本文提出了一种基于物理信息神经网络(PINN)的破碎轨迹拼接方法。本文提出的基于物理信息神经网络(PINN)的方法通过整合物理先验(包括车辆运动学和边界条件)来增强传统神经网络,旨在提供训练域和正则化之外的信息,从而提高方法的准确性和跨动力学场景的外推能力(例如,从低速训练数据外推以重建高速轨迹)。采用两个公开的车辆轨迹数据集(NGSIM 和 HighSIM)来验证所提出的基于 PINN 的方法,并设计了四个有偏差的训练场景来评估基于 PINN 的方法的外推能力。结果表明,与基准模型相比,基于 PINN 的方法在轨迹拼接准确性和一致性方面表现优异。使用我们提出的基于 PINN 的方法处理的数据集已在网上公开发布,以支持交通研究界。此外,这种基于 PINN 的方法还可应用于包括基于物理先验的更广泛场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.20
自引率
16.00%
发文量
285
审稿时长
62 days
期刊介绍: Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management. Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.
期刊最新文献
Fleet sizing and pricing for hybrid ownership of shared autonomous vehicles in a multimodal transportation system Supplier and platform led games of supplier encroachment Data-driven resilience analysis of the global container shipping network against two cascading failures Towards advanced decision-making support for shipping safety: A functional connectivity analysis The Impact of ISSB’s Scope 3 GHG Emissions Validation on US Manufacturers’ Stock Valuations: Analyzing the Role of Supplier Complexity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1