Pengwei Liu , Qinxin Wu , Xingyu Ren , Yian Wang , Dong Ni
{"title":"A deep-learning-based surrogate modeling method with application to plasma processing","authors":"Pengwei Liu , Qinxin Wu , Xingyu Ren , Yian Wang , Dong Ni","doi":"10.1016/j.cherd.2024.09.031","DOIUrl":null,"url":null,"abstract":"<div><div>Rapid and accurate system evolution predictions are crucial in scientific and engineering research. However, the complexity of processing systems, involving multiple physical field couplings and slow convergence of iterative numerical algorithms, leads to low computational efficiency. Hence, this paper introduces a systematic deep-learning-based surrogate modeling methodology for multi-physics-coupled process systems with limited data and long-range time evolution, accurately predicting physics dynamics and considerably improving computational efficiency and generalization. The methodology comprises three main components: (1) generating datasets using a sequential sampling strategy, (2) modeling multi-physics spatio-temporal dynamics by designing a heterogeneous Convolutional Autoencoder and Recurrent Neural Network, and (3) training high-precision models with limited data and long-range time evolution via a dual-phase training strategy. A holistic evaluation using a 2D low-temperature plasma processing example demonstrates the methodology’s superior computational efficiency, accuracy, and generalization capabilities. It predicts plasma dynamics approximately <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> times faster than traditional numerical solvers, with a consistent 2% relative error across different generalization tasks. Furthermore, the potential for transferability across various geometries is explored, and the model’s transfer capability is demonstrated with two distinct geometric domain examples.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"211 ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026387622400563X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid and accurate system evolution predictions are crucial in scientific and engineering research. However, the complexity of processing systems, involving multiple physical field couplings and slow convergence of iterative numerical algorithms, leads to low computational efficiency. Hence, this paper introduces a systematic deep-learning-based surrogate modeling methodology for multi-physics-coupled process systems with limited data and long-range time evolution, accurately predicting physics dynamics and considerably improving computational efficiency and generalization. The methodology comprises three main components: (1) generating datasets using a sequential sampling strategy, (2) modeling multi-physics spatio-temporal dynamics by designing a heterogeneous Convolutional Autoencoder and Recurrent Neural Network, and (3) training high-precision models with limited data and long-range time evolution via a dual-phase training strategy. A holistic evaluation using a 2D low-temperature plasma processing example demonstrates the methodology’s superior computational efficiency, accuracy, and generalization capabilities. It predicts plasma dynamics approximately times faster than traditional numerical solvers, with a consistent 2% relative error across different generalization tasks. Furthermore, the potential for transferability across various geometries is explored, and the model’s transfer capability is demonstrated with two distinct geometric domain examples.
期刊介绍:
ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering.
Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.