{"title":"Multibody interactions between protein inclusions in the pointlike curvature model for tense and tensionless membranes","authors":"Jean-Baptiste Fournier","doi":"10.1140/epje/s10189-024-00456-1","DOIUrl":null,"url":null,"abstract":"<p>The pointlike curvature constraint (PCC) model and the disk detachment angle (DDA) model for the deformation-mediated interaction of conical integral protein inclusions in biomembranes are compared in the small deformation regime. Given the radius of membrane proteins, which is comparable to the membrane thickness, it is not obvious which of the two models should be considered the most adequate. For two proteins in a tensionless membranes, the PCC and DDA models coincide at the leading-order <span>\\(\\sim r^{-4}\\)</span> in their separation but differ at the next order. Yet, for distances larger than twice the proteins diameter, the difference is less than <span>\\(10\\%\\)</span>. Like the DDA model, the PCC model includes all multibody interactions in a non-approximate way. The asymptotic <span>\\(\\sim r^{-4}\\)</span> many-body energy of triangular and square protein clusters is exactly the same in both models. Pentagonal clusters, however, behave differently; they have a vanishing energy in the PCC model, while they have a non-vanishing weaker <span>\\(\\sim r^{-6}\\)</span> asymptotic power law in the DDA model. We quantify the importance of multibody interactions in small polygonal clusters of three, four and five inclusions with identical or opposite curvatures in tensionless or tense membranes. We find that the pairwise approximation is almost always very poor. At short separation, the three-body interaction is not sufficient to account for the full many-body interaction. This is confirmed by equilibrium Monte Carlo simulations of up to ten inclusions.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 10","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-024-00456-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The pointlike curvature constraint (PCC) model and the disk detachment angle (DDA) model for the deformation-mediated interaction of conical integral protein inclusions in biomembranes are compared in the small deformation regime. Given the radius of membrane proteins, which is comparable to the membrane thickness, it is not obvious which of the two models should be considered the most adequate. For two proteins in a tensionless membranes, the PCC and DDA models coincide at the leading-order \(\sim r^{-4}\) in their separation but differ at the next order. Yet, for distances larger than twice the proteins diameter, the difference is less than \(10\%\). Like the DDA model, the PCC model includes all multibody interactions in a non-approximate way. The asymptotic \(\sim r^{-4}\) many-body energy of triangular and square protein clusters is exactly the same in both models. Pentagonal clusters, however, behave differently; they have a vanishing energy in the PCC model, while they have a non-vanishing weaker \(\sim r^{-6}\) asymptotic power law in the DDA model. We quantify the importance of multibody interactions in small polygonal clusters of three, four and five inclusions with identical or opposite curvatures in tensionless or tense membranes. We find that the pairwise approximation is almost always very poor. At short separation, the three-body interaction is not sufficient to account for the full many-body interaction. This is confirmed by equilibrium Monte Carlo simulations of up to ten inclusions.
期刊介绍:
EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems.
Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics.
Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter.
Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research.
The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.