Microstructure response of concentrated suspensions to flow reversal.

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL The European Physical Journal E Pub Date : 2025-01-24 DOI:10.1140/epje/s10189-025-00472-9
A A García, Y L Roht, I Ippolito, D Salin, G Drazer, J P Hulin, G Gauthier
{"title":"Microstructure response of concentrated suspensions to flow reversal.","authors":"A A García, Y L Roht, I Ippolito, D Salin, G Drazer, J P Hulin, G Gauthier","doi":"10.1140/epje/s10189-025-00472-9","DOIUrl":null,"url":null,"abstract":"<p><p>We study experimentally at the macroscopic and microstructure scale a dense suspension of non-Brownian neutrally buoyant spherical particles experiencing periodic reversals of flow at constant rate between parallel plates and tracked individually. We first characterize the quasi-steady state reached at the end of half periods. The volume fraction of particles increases from the walls to the center as a result of migration induced by the nonuniform strain rate. Except very close to the walls and the center, the particle pair distribution is fore-aft asymmetric with depletions of pairs in the extensional quadrants, similar to that reported for shear flows of same volume fraction as the local one. The dynamics of the periodic rearrangements occurring after each flow reversal are characterized by a microstructure tensor component. The relaxation time characterizing the reorganization increases from the walls to the center due to the inhomogeneous strain rate. On the other hand, the local accumulated strain required for this reorganization decreases with the volume fraction, like for viscosity measurements in uniform strain rate conditions. However, the variation of the microstructure with the accumulated strain is faster than that of the viscosity, showing the complementarity of the two measurements.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 1","pages":"7"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1140/epje/s10189-025-00472-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study experimentally at the macroscopic and microstructure scale a dense suspension of non-Brownian neutrally buoyant spherical particles experiencing periodic reversals of flow at constant rate between parallel plates and tracked individually. We first characterize the quasi-steady state reached at the end of half periods. The volume fraction of particles increases from the walls to the center as a result of migration induced by the nonuniform strain rate. Except very close to the walls and the center, the particle pair distribution is fore-aft asymmetric with depletions of pairs in the extensional quadrants, similar to that reported for shear flows of same volume fraction as the local one. The dynamics of the periodic rearrangements occurring after each flow reversal are characterized by a microstructure tensor component. The relaxation time characterizing the reorganization increases from the walls to the center due to the inhomogeneous strain rate. On the other hand, the local accumulated strain required for this reorganization decreases with the volume fraction, like for viscosity measurements in uniform strain rate conditions. However, the variation of the microstructure with the accumulated strain is faster than that of the viscosity, showing the complementarity of the two measurements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
期刊最新文献
Microstructure response of concentrated suspensions to flow reversal. Simulation of a liquid drop on a soft substrate Structural analysis of physical gel networks using graph neural networks Weak non-linearities of amorphous polymer under creep in the vicinity of the glass transition Simple method for the direct measurement of cohesive forces between microscopic particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1