Picotaur: A 15 mg Hexapedal Robot with Electrostatically Driven, 3D-Printed Legs

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) Pub Date : 2024-06-27 DOI:10.1002/aisy.202400196
Sukjun Kim, Aaron M. Johnson, Sarah Bergbreiter
{"title":"Picotaur: A 15 mg Hexapedal Robot with Electrostatically Driven, 3D-Printed Legs","authors":"Sukjun Kim,&nbsp;Aaron M. Johnson,&nbsp;Sarah Bergbreiter","doi":"10.1002/aisy.202400196","DOIUrl":null,"url":null,"abstract":"<p>Dynamic and agile locomotion in legged robots enables them to overcome obstacles and navigate complex and unstructured terrain. However, the leg mechanisms and actuators needed for versatile locomotion are much more challenging to manufacture and integrate in sub-gram scale robots. Herein, Picotaur, a 15.4 mg hexapedal robot with legs that enable various locomotion tasks such as turning, climbing 3D-printed stairs, and pushing loads for the first time at these size scales, is presented. 3D printing with two-photon polymerization enables the manufacture of electrostatically driven 2 degrees of freedom legs on a robot body made from a flexible printed circuit board. Based on simple control inputs, Picotaur can achieve alternating tripod gaits, reaching speeds up to 57 mm (7.2 body lengths) per second, as well as pronking gaits to tackle a wider variety of terrain. This approach to manufacturing and controlling legged robots at smaller scales provides a path forward toward robots that can be used for practical applications ranging from inspection to exploration and rival the performance of insects at similar size scales.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 10","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400196","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic and agile locomotion in legged robots enables them to overcome obstacles and navigate complex and unstructured terrain. However, the leg mechanisms and actuators needed for versatile locomotion are much more challenging to manufacture and integrate in sub-gram scale robots. Herein, Picotaur, a 15.4 mg hexapedal robot with legs that enable various locomotion tasks such as turning, climbing 3D-printed stairs, and pushing loads for the first time at these size scales, is presented. 3D printing with two-photon polymerization enables the manufacture of electrostatically driven 2 degrees of freedom legs on a robot body made from a flexible printed circuit board. Based on simple control inputs, Picotaur can achieve alternating tripod gaits, reaching speeds up to 57 mm (7.2 body lengths) per second, as well as pronking gaits to tackle a wider variety of terrain. This approach to manufacturing and controlling legged robots at smaller scales provides a path forward toward robots that can be used for practical applications ranging from inspection to exploration and rival the performance of insects at similar size scales.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Picotaur:15 毫克六面体机器人,带静电驱动的 3D 打印腿
腿部机器人的动态和敏捷运动使其能够克服障碍,并在复杂和非结构化的地形中航行。然而,在亚克级机器人中制造和集成多功能运动所需的腿部机构和致动器却具有很大的挑战性。本文介绍的 Picotaur 是一种 15.4 毫克的六面体机器人,它的腿部可实现各种运动任务,如转弯、攀爬 3D 打印楼梯和推动负载等,这在这些尺寸尺度的机器人中尚属首次。利用双光子聚合技术进行三维打印,可以在柔性印刷电路板制成的机器人身体上制造出静电驱动的双自由度腿。只需简单的控制输入,Picotaur 就能实现交替的三脚架步态,速度可达每秒 57 毫米(7.2 个体长),还能实现发音步态,以应对更多地形。这种以较小尺度制造和控制有腿机器人的方法,为机器人提供了一条前进的道路,使其可以用于从检查到探索的各种实际应用,其性能可以与具有类似大小尺度的昆虫相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Masthead A Flexible, Architected Soft Robotic Actuator for Motorized Extensional Motion Design and Optimization of a Magnetic Field Generator for Magnetic Particle Imaging with Soft Magnetic Materials High-Performance Textile-Based Capacitive Strain Sensors via Enhanced Vapor Phase Polymerization of Pyrrole and Their Application to Machine Learning-Assisted Hand Gesture Recognition Optimized Magnetically Docked Ingestible Capsules for Non-Invasive Refilling of Implantable Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1