{"title":"Harnessing synergy of spin and orbital currents in heavy metal/ferromagnet multilayers","authors":"Yumin Yang, Zhicheng Xie, Zhiyuan Zhao, Na Lei, Jianhua Zhao, Dahai Wei","doi":"10.1038/s42005-024-01829-w","DOIUrl":null,"url":null,"abstract":"Spin-orbitronics, exploiting electron spin and/or orbital angular momentum, offers a powerful route to energy-efficient spintronic applications. Recent research on orbital currents in light metals broadens the scope of spin-orbit torque (SOT). However, distinguishing and manipulating orbital torque in heavy metal/ferromagnet (HM/FM) remains a challenge, limiting the promising synergy of spin and orbital currents. Here, we design a HM/FM/FMSOC heterostructure and experimentally separate orbital torque contribution from spin torque by utilizing the distinct diffusion length of spin and orbital currents. Furthermore, we achieve the synergy of spin and orbital torques by controlling their relative strength, and obtain a 110% improvement in torque efficiency compared to the representative Pt/Co bilayer. Our findings not only contribute to a deeper understanding of SOT mechanisms and orbital current transport in HM/FM multilayers, but also highlight the promising prospect of orbital and spin torque synergy for optimizing the efficiency of next-generation spintronic devices. Eliminating the interference of spin current to distinguish and manipulate orbital torque in heavy metal/ferromagnet (HM/FM) heterojunction remains a challenge. Here, the authors design a HM/FM/FMSOC multilayer to separate orbital torque contribution and harness the synergy of spin and orbital currents for enhanced spin-orbit torque.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01829-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01829-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spin-orbitronics, exploiting electron spin and/or orbital angular momentum, offers a powerful route to energy-efficient spintronic applications. Recent research on orbital currents in light metals broadens the scope of spin-orbit torque (SOT). However, distinguishing and manipulating orbital torque in heavy metal/ferromagnet (HM/FM) remains a challenge, limiting the promising synergy of spin and orbital currents. Here, we design a HM/FM/FMSOC heterostructure and experimentally separate orbital torque contribution from spin torque by utilizing the distinct diffusion length of spin and orbital currents. Furthermore, we achieve the synergy of spin and orbital torques by controlling their relative strength, and obtain a 110% improvement in torque efficiency compared to the representative Pt/Co bilayer. Our findings not only contribute to a deeper understanding of SOT mechanisms and orbital current transport in HM/FM multilayers, but also highlight the promising prospect of orbital and spin torque synergy for optimizing the efficiency of next-generation spintronic devices. Eliminating the interference of spin current to distinguish and manipulate orbital torque in heavy metal/ferromagnet (HM/FM) heterojunction remains a challenge. Here, the authors design a HM/FM/FMSOC multilayer to separate orbital torque contribution and harness the synergy of spin and orbital currents for enhanced spin-orbit torque.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.