Liyuan Cao , Xueqin Li , Yu Huang , Chunxiang Li , Hang Pan
{"title":"High robust eddy current tuned tandem mass dampers-inerters for structures under the ground acceleration","authors":"Liyuan Cao , Xueqin Li , Yu Huang , Chunxiang Li , Hang Pan","doi":"10.1016/j.soildyn.2024.109040","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a novel eddy current tuned tandem mass dampers-inerters, referred to as EC-TTMDI is proposed, a theoretical analysis model of the vibration control mechanism is established, and parameterized analysis and design are conducted using the intelligent optimization algorithm. This model is the single-degree-of-freedom (SDOF) structure with EC-TTMDI subjected to Gaussian white noise base excitation. Specifically, the expression for the displacement variance of the SDOF structure-EC-TTMDI system was firstly obtained with resorting to both the equivalent linearization of eddy current damper (ECD) and residue theorem. The optimization objective function was then defined as minimization of the displacement variance, which is product of the white noise intensity and the square of H<sub>2</sub> norm of the model transfer function. Employing the pattern-search algorithm, the variation trends of the objective function and the optimum design parameters were subsequently scrutinized. The vibration damping mechanism of EC-TTMDI is then revealed in terms of control effectiveness, robustness, structural frequency response, suppression bandwidth, and stroke. Finally, the time history response analysis of the SDOF structure-EC-TTMDI system subjected to the near-field impulse, near-field non-impulse, and far-field earthquakes was conducted to further confirm the performance superiority of EC-TTMDI. Results demonstrates that EC-TTMDI offers higher robustness and better control effectiveness compared to TTMDI and TMDI. Furthermore, EC-TTMDI features the damping force limiting characteristic, which enhances the integrity and reliability of TTMDI.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"188 ","pages":"Article 109040"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026772612400592X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a novel eddy current tuned tandem mass dampers-inerters, referred to as EC-TTMDI is proposed, a theoretical analysis model of the vibration control mechanism is established, and parameterized analysis and design are conducted using the intelligent optimization algorithm. This model is the single-degree-of-freedom (SDOF) structure with EC-TTMDI subjected to Gaussian white noise base excitation. Specifically, the expression for the displacement variance of the SDOF structure-EC-TTMDI system was firstly obtained with resorting to both the equivalent linearization of eddy current damper (ECD) and residue theorem. The optimization objective function was then defined as minimization of the displacement variance, which is product of the white noise intensity and the square of H2 norm of the model transfer function. Employing the pattern-search algorithm, the variation trends of the objective function and the optimum design parameters were subsequently scrutinized. The vibration damping mechanism of EC-TTMDI is then revealed in terms of control effectiveness, robustness, structural frequency response, suppression bandwidth, and stroke. Finally, the time history response analysis of the SDOF structure-EC-TTMDI system subjected to the near-field impulse, near-field non-impulse, and far-field earthquakes was conducted to further confirm the performance superiority of EC-TTMDI. Results demonstrates that EC-TTMDI offers higher robustness and better control effectiveness compared to TTMDI and TMDI. Furthermore, EC-TTMDI features the damping force limiting characteristic, which enhances the integrity and reliability of TTMDI.
期刊介绍:
The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering.
Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.